树形dp - 求树的直径

随着杭州西湖的知名度的进一步提升,园林规划专家湫湫希望设计出一条新的经典观光线路,根据老板马小腾的指示,新的风景线最好能建成环形,如果没有条件建成环形,那就建的越长越好。
  现在已经勘探确定了n个位置可以用来建设,在它们之间也勘探确定了m条可以设计的路线以及他们的长度。请问是否能够建成环形的风景线?如果不能,风景线最长能够达到多少?
  其中,可以兴建的路线均是双向的,他们之间的长度均大于0。


Input  测试数据有多组,每组测试数据的第一行有两个数字n, m,其含义参见题目描述;
  接下去m行,每行3个数字u v w,分别代表这条线路的起点,终点和长度。

   [Technical Specification]
  1. n<=100000
  2. m <= 1000000
  3. 1<= u, v <= n
  4. w <= 1000
Output  对于每组测试数据,如果能够建成环形(并不需要连接上去全部的风景点),那么输出YES,否则输出最长的长度,每组数据输出一行。
Sample Input
3 3
1 2 1
2 3 1
3 1 1
Sample Output
YES

题意 : 先判断一下图中是否有环,有就直接输出YES,否则在输出这个无环图中的最长链
思路分析:判断一个图中是否有环,采用并查集即可,找树上的最长链,也就是树的直径,有两种方法,一种是用采用树形dp,那么树上最长的链就是当前结点最远和次远的儿子加起来的和。
   dp[x][0] 表示树上次远的距离是多少, dp[x][1]表示树上最远的距离是多少。
代码示例:
  
const int maxn = 1e5+5;

int n, m;
struct node
{
    int to, cost;
    
    node(int _to=0, int _cost=0):to(_to), cost(_cost){}
};
vector<node>ve[maxn];
int f[maxn];
int fid(int x){
    if (x != f[x]) f[x] = fid(f[x]);
    return f[x];
}
bool pt[maxn];
int dp[maxn][2];
int ans;

void dfs(int x, int fa){
    pt[x] = true;
    
    for(int i = 0; i < ve[x].size(); i++){
        int to = ve[x][i].to;
        int cost = ve[x][i].cost;
        
        if (to == fa) continue;
        dfs(to, x);
        if (dp[x][1] < dp[to][1]+cost){
            dp[x][0] = dp[x][1];
            dp[x][1] = dp[to][1]+cost;
        }
        else if (dp[x][0] < dp[to][1]+cost){
            dp[x][0] = dp[to][1]+cost;
        }
    }
    ans = max(ans, dp[x][1]+dp[x][0]);
}

int main() {
    //freopen("in.txt", "r", stdin);
    //freopen("out.txt", "w", stdout);
    int x, y, z;
    
    while(~scanf("%d%d", &n, &m)){
        for(int i = 1; i <= n; i++) f[i]=i, ve[i].clear();
        int flag = 0;
        for(int i = 1; i <= m; i++){
            scanf("%d%d%d", &x, &y, &z);
            ve[x].push_back(node(y, z));
            ve[y].push_back(node(x, z));    
            int x1 = fid(x), x2 = fid(y);
            if (x1 == x2) flag = 1;
            else f[x1] = x2;
        }
        if (flag) {printf("YES\n"); continue;}
        
        memset(pt, false, sizeof(pt));
        memset(dp, 0, sizeof(dp));
        ans = 0;
        for(int i = 1; i <= n; i++){
            if (!pt[i]) dfs(i, 0);
        }        
        printf("%d\n", ans);
    }
    return 0;
}

 

posted @ 2018-06-13 13:04  楼主好菜啊  阅读(1401)  评论(2编辑  收藏  举报