计算几何 + 欧拉定理 (一笔画)
题目大意:
依次给定多个点(要求第一个点和最后一个点重叠),把前后两个点相连求最后得到的图形的面的个数
思路分析 :
借助欧拉定理,V+F-E = 2,只要求出点的数量和边的数量就可以计算出面的数量,点的数量只要枚举直线就可以,但是有可能有重复的点,之最去重一下就可以,然后在枚举剩下的点出现在几条直线中。
代码示例:(未测试)
#define ll long long const double eps = 1e-10; const double pi = acos(-1.0); struct point { double x, y; point(double _x, double _y):x(_x), y(_y){} // 点-点=向量 point operator-(const point &v){ return point(x-v.x, y-v.y); } }; int dcmp(double x){ if (fabs(x)<eps) return 0; else return x<0?-1:1; } bool operator == (const point &a, const point &b){ return (dcmp(a.x-b.x)==0 && dcmp(a.y-b.y)==0); } typedef point Vector; // Vector表示向量 //点积 double Dot(Vector a, Vector b){return a.x*b.x+a.y*b.y;} //线段的长度 double Lenth(Vector a){return sqrt(Dot(a, a));} //向量的夹角(弧度) double Angle(Vector a, Vector b){return acos(Dot(a, b)/Lenth(a)/Lenth(b));} //叉积 double Cross(Vector a, Vector b){return a.x*b.y-a.y*b.x;} //三角形有向面积的2倍 double Area2(point a, point b, point c){return Cross(b-a, c-a);} //向量旋转,a为逆时针旋转的角度 // rad是弧度 point Rotate(Vector a, double rad){ return point(a.x*cos(rad)-a.y*sin(rad), a.x*sin(rad)+a.y*cos(rad)); } //计算向量的单位法线 point Normal(Vector a){ double L = Lenth(a); return point(-a.y/L, a.x/L); } // 两条直线的交点 // 两条直线为 p+tv, q+tw,其中p, q为两直线上的一点, v,w是直线所在方向的向量, // 交点在第一条直线的参数为t1, 第二条直线的参数为t2 // t1 = (cross(w,u)/cross(v,w)); t2 = (cross(v,u)/cross(v,w)); // 调用前要确保两直线有唯一交点,当且仅当两直线不共线 point Getline(point p, Vector v, point q, Vector w){ point u = p-q; double t = Cross(w, u)/Cross(v, w); return point(p.x+v.x*t, p.y+v.y*t); } //点到直线的距离 double Dis(point p, point a, point b){ Vector v1 = b-a, v2 = p-a; return fabs(Cross(v1, v2)/Lenth(v1)); } //点到线段的距离 //点p在直线的投影可能在直线上,也可能不在直线上 double Dis2(point p, point a, point b){ if (a==b) return Lenth(p-a); Vector v1=b-a, v2 = p-a, v3=p-b; if (dcmp(Dot(v1, v2))<0) return Lenth(v2); // 注意大小于号 if (dcmp(Dot(v1, v3))>0) return Lenth(v3); else return fabs(Cross(v1, v2)/Lenth(v1)); } //点在线段上的投影 point Getline2(point p, point a, point b){ Vector v = b-a; double f = Dot(v, p-a)/Dot(v, v); return point(a.x+v.x*f, a.y+v.y*f); } //线段相交判定(交点不在端点的位置,且两直线仅有唯一交点) bool Inter(point a1, point a2, point b1, point b2){ double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1), c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1); return dcmp(c1)*dcmp(c2)<0 && dcmp(c3)*dcmp(c4)<0; } //线段相交判定,判定端点是否在另一条直线上(交点不在两直线端点得位置) bool OneInter(point p, point a1, point a2){ return dcmp(Cross(a1-p, a2-p))==0 && dcmp(Dot(a1-p, a2-p))<0; } // 视题目要求是否特判两直线有端点重合的情况 vector<point>p, v; bool cmp(point a, point b){ if (a.x == b.x) return a.y<b.y; else return a.x<b.x; } int main() { int n; double x, y; cin >> n; for(int i = 1; i <= n; i++){ scanf("%lf%lf", &x, &y); p.push_back(point(x, y)); v.push_back(point(x, y)); } v.push_back(point(x, y)); n--; // 最后一个点是起点 for(int i = 0; i < n; i++){ for(int j = i+1; j < n; j++){ if (Inter(p[i], p[i+1], p[j], p[j+1])) { v.push_back(Getline(p[i], p[i+1]-p[i], p[j], p[j+1]-p[j])); } } } sort(v.begin(), v.end(), cmp); v.erase(unique(v.begin(), v.end()), v.end()); int c = v.size(); int e = n; for(int i = 0; i < c; i++){ for(int j = 0; j < n; j++){ if (OneInter(v[i], p[j], p[j+1])) e++; } } printf("%d\n", e-c+2); return 0; }
东北日出西边雨 道是无情却有情