MongoDB MapReduce

MapReduce 简介

MongoDB 中的 MapReduce 可以用来实现更复杂的聚合命令,使用 MapReduce 主要实现两个函数:map 函数和reduce函数

  • map 函数(分组):用来生成键值对序列,map 函数的结果作为 reduce 函数的参数
  • reduce 函数(聚合):将 map 函数的结果再做进一步的统计
MapReduce 原理

Map-Reduce 是一种计算模型,简单的说就是将大批量的集合文档进行分组(Map),然后再将分组后的 key-value 键值对结果进行统计得到最终结果(Reduce)。MongoDB 提供的 Map-Reduce 非常灵活,对于大规模分布式数据分析也相当实用。

MapReduce 基本语法
db.collection.mapReduce(
   function() {emit(key,value);},  # map 函数
   function(key,values) {return reduceFunction},   # reduce 函数
   # 可选操作
   {
      out: collection,
      query: document,
      sort: document,
      limit: number
   }
)

使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, 将 key 与 value 传递给 Reduce 函数进行处理。

Map 函数必须调用 emit(key, value) 返回键值对。

参数说明:

  • map :映射函数 (生成键值对序列,作为 reduce 函数参数)。
  • reduce 统计函数,reduce函数的任务就是将key-values变成key-value,也就是把values数组变成一个单一的值value。。
  • out 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
  • query 一个筛选条件,只有满足条件的文档才会调用map函数。(query。limit,sort可以随意组合)
  • sort 和limit结合的sort排序参数(也是在发往map函数前给文档排序),可以优化分组机制
  • limit 发往map函数的文档数量的上限(要是没有limit,单独使用sort的用处不大)

posted @   追こするれい的人  阅读(41)  评论(0编辑  收藏  举报
编辑推荐:
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
阅读排行:
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 使用C#创建一个MCP客户端
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列1:轻松3步本地部署deepseek,普通电脑可用
· 按钮权限的设计及实现
点击右上角即可分享
微信分享提示