在此献上一个牛逼网站: 计算机几何概述:http://dev.gameres.com/Program/Abstract/Geometry.htm 矢量的概念:   如果一条线段的端点是有次序之分的,我们把这种线段成为有向线段(directed segment)。如果有向线段p1p2的起点p1在坐标原点,我们可以把它称为矢量(vector)p2。   矢量加减法:   设二维矢量P = ( x1, y1 ),Q = ( x2 , y2 ),则矢量加法定义为: P + Q = ( x1 + x2 , y1 + y2 ),同样的,矢量减法定义为: P - Q = ( x1 - x2 , y1 - y2 )。显然有性质 P + Q = Q + P,P - Q = - ( Q - P )。   矢量叉积:   计算矢量叉积是与直线和线段相关算法的核心部分。设矢量P = ( x1, y1 ),Q = ( x2, y2 ),则矢量叉积定义为由(0,0)、p1、p2和p1+p2所组成的平行四边形的带符号的面积,即:P × Q = x1*y2 - x2*y1,其结果是一个标量。显然有性质 P × Q = - ( Q × P ) 和 P × ( - Q ) = - ( P × Q )。一般在不加说明的情况下,本文下述算法中所有的点都看作矢量,两点的加减法就是矢量相加减,而点的乘法则看作矢量叉积。   叉积的一个非常重要性质是可以通过它的符号判断两矢量相互之间的顺逆时针关系:   若 P × Q > 0 , 则P在Q的顺时针方向。   若 P × Q < 0 , 则P在Q的逆时针方向。   若 P × Q = 0 , 则P与Q共线,但可能同向也可能反向。 1.判断两线段是否相交:   我们分两步确定两条线段是否相交:   (1)快速排斥试验     设以线段 P1P2 为对角线的矩形为R, 设以线段 Q1Q2 为对角线的矩形为T,如果R和T不相交,显然两线段不会相交。   (2)跨立试验     如果两线段相交,则两线段必然相互跨立对方。若P1P2跨立Q1Q2 ,则矢量 ( P1 - Q1 ) 和( P2 - Q1 )位于矢量( Q2 - Q1 ) 的两侧,即( P1 - Q1 ) × ( Q2 - Q1 ) * ( P2 - Q1 ) × ( Q2 - Q1 ) < 0。上式可改写成( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) > 0。当 ( P1 - Q1 ) × ( Q2 - Q1 ) = 0 时,说明 ( P1 - Q1 ) 和 ( Q2 - Q1 )共线,但是因为已经通过快速排斥试验,所以 P1 一定在线段 Q1Q2上;同理,( Q2 - Q1 ) ×(P2 - Q1 ) = 0 说明 P2 一定在线段 Q1Q2上。所以判断P1P2跨立Q1Q2的依据是:( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) >= 0。同理判断Q1Q2跨立P1P2的依据是:( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) >= 0。  
posted on 2011-11-06 08:49  cchun  阅读(172)  评论(0编辑  收藏  举报