链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=453
There are a lot of trees in an area. A peasant wants to buy a rope to surround all these trees. So at first he must know the minimal required length of the rope. However, he does not know how to calculate it. Can you help him?
The diameter and length of the trees are omitted, which means a tree can be seen as a point. The thickness of the rope is also omitted which means a rope can be seen as a line.
There are no more than 100 trees.
Input
The input contains one or more data sets. At first line of each input data set is number of trees in this data set, it is followed by series of coordinates of the trees. Each coordinate is a positive integer pair, and each integer is less than 32767. Each pair is separated by blank.
Zero at line for number of trees terminates the input for your program.
Output
The minimal length of the rope. The precision should be 10^-2.
Sample Input
9
12 7
24 9
30 5
41 9
80 7
50 87
22 9
45 1
50 7
0
Sample Output
243.06
-------------------------------------------------------------
题意很明了,就是凸包求取周长,看了别人模板,看了两天还是似懂非懂,最后照模板敲了,真不知道什么时候才可以真正掌握
AC不易,且行且珍惜……

1 #include <stdio.h> 2 #include <string.h> 3 #include <stdlib.h> 4 #include <iostream> 5 #include <algorithm> 6 #include <math.h> 7 using namespace std; 8 9 #define MAX 110 10 const double eps=1e-6; 11 12 typedef struct 13 { 14 double x,y; 15 }point; 16 17 point c[MAX]; 18 19 bool dy(double x,double y) 20 { 21 return x>y+eps; 22 } 23 bool xy(double x,double y) 24 { 25 return x<y-eps; 26 } 27 bool xyd(double x,double y) 28 { 29 return x<y+eps; 30 } 31 bool dyd(double x,double y) 32 { 33 return x>y-eps; 34 } 35 bool dd(double x,double y) 36 { 37 return fabs(x-y)<eps; 38 } 39 40 double crossProduct(point a,point b,point c) 41 { 42 return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x); 43 } 44 double dist(point a,point b) 45 { 46 return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); 47 } 48 49 bool cmp(point a,point b) 50 { 51 if(dd(a.y,b.y)) 52 return xy(a.x,b.x); 53 return xy(a.y,b.y); 54 } 55 bool cmp1(point a,point b) 56 { 57 double len=crossProduct(c[0],a,b); 58 if(dd(len,0.0)) 59 return xy(dist(c[0],a),dist(c[0],b)); 60 return xy(len,0.0); 61 } 62 63 point stk[MAX]; 64 int top; 65 66 double dis() 67 { 68 double sum=0.0; 69 for(int i=0;i<top;i++) 70 { 71 sum+=dist(stk[i],stk[i+1]); 72 } 73 sum+=dist(stk[top],stk[0]); 74 return sum; 75 } 76 77 double Graham(int n) 78 { 79 sort(c,c+n,cmp); 80 sort(c+1,c+n,cmp1); 81 top=0; 82 stk[top++]=c[0]; 83 stk[top++]=c[1]; 84 stk[top++]=c[2]; 85 top--; 86 for(int i=3;i<n;i++) 87 { 88 while(1) 89 { 90 point a,b; 91 a=stk[top]; 92 b=stk[top-1]; 93 if(xyd(crossProduct(a,b,c[i]),0.0)) 94 { 95 top--; 96 } 97 else 98 break; 99 } 100 stk[++top]=c[i]; 101 } 102 return dis(); 103 } 104 105 int main() 106 { 107 int i,j,k,t; 108 int n,m; 109 while(scanf("%d",&n)!=EOF&&n) 110 { 111 for(i=0;i<n;i++) 112 { 113 scanf("%lf%lf",&c[i].x,&c[i].y); 114 } 115 if(n==1) 116 { 117 printf("0.00\n"); 118 //continue; 119 } 120 else if(n==2) 121 { 122 printf("%.2lf\n",2*dist(c[0],c[1])); 123 //continue; 124 } 125 else 126 { 127 printf("%.2lf\n",Graham(n)); 128 } 129 } 130 return 0; 131 }
· .NET制作智能桌面机器人:结合BotSharp智能体框架开发语音交互
· 软件产品开发中常见的10个问题及处理方法
· .NET 原生驾驭 AI 新基建实战系列:向量数据库的应用与畅想
· 从问题排查到源码分析:ActiveMQ消费端频繁日志刷屏的秘密
· 一次Java后端服务间歇性响应慢的问题排查记录
· 互联网不景气了那就玩玩嵌入式吧,用纯.NET开发并制作一个智能桌面机器人(四):结合BotSharp
· 一个基于 .NET 开源免费的异地组网和内网穿透工具
· 《HelloGitHub》第 108 期
· Windows桌面应用自动更新解决方案SharpUpdater5发布
· 我的家庭实验室服务器集群硬件清单