import numpy as np x=np.random.randint(0,52,52) x
k=3 y=np.zeros(20) y
array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
def intcent(x,k): return x[0:k].reshape(k) kc=intcent(x,k) kc array([21, 8, 45])
d=abs(2-kc) np.where(d==np.min(d))[0][0] 1
def nearest(kc,i): d=(abs(kc-i)) w=np.where(d==np.min(d)) return w[0][0]
def xclassfy(x,y,kc): for i in range(x.shape[0]): y[i]=nearst(kc,x[i]) return y
from sklearn.datasets import load_iris iris=load_iris() iris x=iris.data x
Out[1]: array([[5.1, 3.5, 1.4, 0.2], [4.9, 3. , 1.4, 0.2], [4.7, 3.2, 1.3, 0.2], [4.6, 3.1, 1.5, 0.2], [5. , 3.6, 1.4, 0.2], [5.4, 3.9, 1.7, 0.4], [4.6, 3.4, 1.4, 0.3], [5. , 3.4, 1.5, 0.2], [4.4, 2.9, 1.4, 0.2], [4.9, 3.1, 1.5, 0.1], [5.4, 3.7, 1.5, 0.2], [4.8, 3.4, 1.6, 0.2], [4.8, 3. , 1.4, 0.1], [4.3, 3. , 1.1, 0.1], [5.8, 4. , 1.2, 0.2], [5.7, 4.4, 1.5, 0.4], [5.4, 3.9, 1.3, 0.4], [5.1, 3.5, 1.4, 0.3], [5.7, 3.8, 1.7, 0.3], [5.1, 3.8, 1.5, 0.3], [5.4, 3.4, 1.7, 0.2], [5.1, 3.7, 1.5, 0.4], [4.6, 3.6, 1. , 0.2], [5.1, 3.3, 1.7, 0.5], [4.8, 3.4, 1.9, 0.2], [5. , 3. , 1.6, 0.2], [5. , 3.4, 1.6, 0.4], [5.2, 3.5, 1.5, 0.2], [5.2, 3.4, 1.4, 0.2], [4.7, 3.2, 1.6, 0.2], [4.8, 3.1, 1.6, 0.2], [5.4, 3.4, 1.5, 0.4], [5.2, 4.1, 1.5, 0.1], [5.5, 4.2, 1.4, 0.2], [4.9, 3.1, 1.5, 0.1], [5. , 3.2, 1.2, 0.2], [5.5, 3.5, 1.3, 0.2], [4.9, 3.1, 1.5, 0.1], [4.4, 3. , 1.3, 0.2], [5.1, 3.4, 1.5, 0.2], [5. , 3.5, 1.3, 0.3], [4.5, 2.3, 1.3, 0.3], [4.4, 3.2, 1.3, 0.2], [5. , 3.5, 1.6, 0.6], [5.1, 3.8, 1.9, 0.4], [4.8, 3. , 1.4, 0.3], [5.1, 3.8, 1.6, 0.2], [4.6, 3.2, 1.4, 0.2], [5.3, 3.7, 1.5, 0.2], [5. , 3.3, 1.4, 0.2], [7. , 3.2, 4.7, 1.4], [6.4, 3.2, 4.5, 1.5], [6.9, 3.1, 4.9, 1.5], [5.5, 2.3, 4. , 1.3], [6.5, 2.8, 4.6, 1.5], [5.7, 2.8, 4.5, 1.3], [6.3, 3.3, 4.7, 1.6], [4.9, 2.4, 3.3, 1. ], [6.6, 2.9, 4.6, 1.3], [5.2, 2.7, 3.9, 1.4], [5. , 2. , 3.5, 1. ], [5.9, 3. , 4.2, 1.5], [6. , 2.2, 4. , 1. ], [6.1, 2.9, 4.7, 1.4], [5.6, 2.9, 3.6, 1.3], [6.7, 3.1, 4.4, 1.4], [5.6, 3. , 4.5, 1.5], [5.8, 2.7, 4.1, 1. ], [6.2, 2.2, 4.5, 1.5], [5.6, 2.5, 3.9, 1.1], [5.9, 3.2, 4.8, 1.8], [6.1, 2.8, 4. , 1.3], [6.3, 2.5, 4.9, 1.5], [6.1, 2.8, 4.7, 1.2], [6.4, 2.9, 4.3, 1.3], [6.6, 3. , 4.4, 1.4], [6.8, 2.8, 4.8, 1.4], [6.7, 3. , 5. , 1.7], [6. , 2.9, 4.5, 1.5], [5.7, 2.6, 3.5, 1. ], [5.5, 2.4, 3.8, 1.1], [5.5, 2.4, 3.7, 1. ], [5.8, 2.7, 3.9, 1.2], [6. , 2.7, 5.1, 1.6], [5.4, 3. , 4.5, 1.5], [6. , 3.4, 4.5, 1.6], [6.7, 3.1, 4.7, 1.5], [6.3, 2.3, 4.4, 1.3], [5.6, 3. , 4.1, 1.3], [5.5, 2.5, 4. , 1.3], [5.5, 2.6, 4.4, 1.2], [6.1, 3. , 4.6, 1.4], [5.8, 2.6, 4. , 1.2], [5. , 2.3, 3.3, 1. ], [5.6, 2.7, 4.2, 1.3], [5.7, 3. , 4.2, 1.2], [5.7, 2.9, 4.2, 1.3], [6.2, 2.9, 4.3, 1.3], [5.1, 2.5, 3. , 1.1], [5.7, 2.8, 4.1, 1.3], [6.3, 3.3, 6. , 2.5], [5.8, 2.7, 5.1, 1.9], [7.1, 3. , 5.9, 2.1], [6.3, 2.9, 5.6, 1.8], [6.5, 3. , 5.8, 2.2], [7.6, 3. , 6.6, 2.1], [4.9, 2.5, 4.5, 1.7], [7.3, 2.9, 6.3, 1.8], [6.7, 2.5, 5.8, 1.8], [7.2, 3.6, 6.1, 2.5], [6.5, 3.2, 5.1, 2. ], [6.4, 2.7, 5.3, 1.9], [6.8, 3. , 5.5, 2.1], [5.7, 2.5, 5. , 2. ], [5.8, 2.8, 5.1, 2.4], [6.4, 3.2, 5.3, 2.3], [6.5, 3. , 5.5, 1.8], [7.7, 3.8, 6.7, 2.2], [7.7, 2.6, 6.9, 2.3], [6. , 2.2, 5. , 1.5], [6.9, 3.2, 5.7, 2.3], [5.6, 2.8, 4.9, 2. ], [7.7, 2.8, 6.7, 2. ], [6.3, 2.7, 4.9, 1.8], [6.7, 3.3, 5.7, 2.1], [7.2, 3.2, 6. , 1.8], [6.2, 2.8, 4.8, 1.8], [6.1, 3. , 4.9, 1.8], [6.4, 2.8, 5.6, 2.1], [7.2, 3. , 5.8, 1.6], [7.4, 2.8, 6.1, 1.9], [7.9, 3.8, 6.4, 2. ], [6.4, 2.8, 5.6, 2.2], [6.3, 2.8, 5.1, 1.5], [6.1, 2.6, 5.6, 1.4], [7.7, 3. , 6.1, 2.3], [6.3, 3.4, 5.6, 2.4], [6.4, 3.1, 5.5, 1.8], [6. , 3. , 4.8, 1.8], [6.9, 3.1, 5.4, 2.1], [6.7, 3.1, 5.6, 2.4], [6.9, 3.1, 5.1, 2.3], [5.8, 2.7, 5.1, 1.9], [6.8, 3.2, 5.9, 2.3], [6.7, 3.3, 5.7, 2.5], [6.7, 3. , 5.2, 2.3], [6.3, 2.5, 5. , 1.9], [6.5, 3. , 5.2, 2. ], [6.2, 3.4, 5.4, 2.3], [5.9, 3. , 5.1, 1.8]])
x1=x[:,0] x1 array([5.1, 4.9, 4.7, 4.6, 5. , 5.4, 4.6, 5. , 4.4, 4.9, 5.4, 4.8, 4.8, 4.3, 5.8, 5.7, 5.4, 5.1, 5.7, 5.1, 5.4, 5.1, 4.6, 5.1, 4.8, 5. , 5. , 5.2, 5.2, 4.7, 4.8, 5.4, 5.2, 5.5, 4.9, 5. , 5.5, 4.9, 4.4, 5.1, 5. , 4.5, 4.4, 5. , 5.1, 4.8, 5.1, 4.6, 5.3, 5. , 7. , 6.4, 6.9, 5.5, 6.5, 5.7, 6.3, 4.9, 6.6, 5.2, 5. , 5.9, 6. , 6.1, 5.6, 6.7, 5.6, 5.8, 6.2, 5.6, 5.9, 6.1, 6.3, 6.1, 6.4, 6.6, 6.8, 6.7, 6. , 5.7, 5.5, 5.5, 5.8, 6. , 5.4, 6. , 6.7, 6.3, 5.6, 5.5, 5.5, 6.1, 5.8, 5. , 5.6, 5.7, 5.7, 6.2, 5.1, 5.7, 6.3, 5.8, 7.1, 6.3, 6.5, 7.6, 4.9, 7.3, 6.7, 7.2, 6.5, 6.4, 6.8, 5.7, 5.8, 6.4, 6.5, 7.7, 7.7, 6. , 6.9, 5.6, 7.7, 6.3, 6.7, 7.2, 6.2, 6.1, 6.4, 7.2, 7.4, 7.9, 6.4, 6.3, 6.1, 7.7, 6.3, 6.4, 6. , 6.9, 6.7, 6.9, 5.8, 6.8, 6.7, 6.7, 6.3, 6.5, 6.2, 5.9])
from sklearn.cluster import KMeans est=KMeans(n_clusters=3) est.fit(x) est.cluster_centers_ y=est.predict(x) y array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1])
import matplotlib.pyplot as plt plt.scatter(x[:,0],x[:,1],c=y,cmap='rainbow') plt.show()
est1=KMeans(n_clusters=4) x1=x[:,0].reshape(-1,1) est1.fit(x1) y=est1.labels_ plt.scatter(x1,x1) plt.show()
est1=KMeans(n_clusters=4) x1=x[:,0] est=KMeans(n_clusters=4) est.fit(x) KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=4, n_init=10, n_jobs=1, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0)
est1=KMeans(n_clusters=4) x1=x[:,0].reshape(-1,1) x1 array([[5.1], [4.9], [4.7], [4.6], [5. ], [5.4], [4.6], [5. ], [4.4], [4.9], [5.4], [4.8], [4.8], [4.3], [5.8], [5.7], [5.4], [5.1], [5.7], [5.1], [5.4], [5.1], [4.6], [5.1], [4.8], [5. ], [5. ], [5.2], [5.2], [4.7], [4.8], [5.4], [5.2], [5.5], [4.9], [5. ], [5.5], [4.9], [4.4], [5.1], [5. ], [4.5], [4.4], [5. ], [5.1], [4.8], [5.1], [4.6], [5.3], [5. ], [7. ], [6.4], [6.9], [5.5], [6.5], [5.7], [6.3], [4.9], [6.6], [5.2], [5. ], [5.9], [6. ], [6.1], [5.6], [6.7], [5.6], [5.8], [6.2], [5.6], [5.9], [6.1], [6.3], [6.1], [6.4], [6.6], [6.8], [6.7], [6. ], [5.7], [5.5], [5.5], [5.8], [6. ], [5.4], [6. ], [6.7], [6.3], [5.6], [5.5], [5.5], [6.1], [5.8], [5. ], [5.6], [5.7], [5.7], [6.2], [5.1], [5.7], [6.3], [5.8], [7.1], [6.3], [6.5], [7.6], [4.9], [7.3], [6.7], [7.2], [6.5], [6.4], [6.8], [5.7], [5.8], [6.4], [6.5], [7.7], [7.7], [6. ], [6.9], [5.6], [7.7], [6.3], [6.7], [7.2], [6.2], [6.1], [6.4], [7.2], [7.4], [7.9], [6.4], [6.3], [6.1], [7.7], [6.3], [6.4], [6. ], [6.9], [6.7], [6.9], [5.8], [6.8], [6.7], [6.7], [6.3], [6.5], [6.2], [5.9]])
est1=KMeans(n_clusters=4) x1=x[:,0].reshape(-1,1) est1=KMeans(n_clusters=4) est1.fit(x1) est1.labels_ array([1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 0, 3, 0, 3, 1, 3, 1, 1, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 3, 0, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 0, 0, 0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 3, 0, 2, 3, 3, 2, 1, 2, 3, 2, 3, 3, 3, 0, 0, 3, 3, 2, 2, 0, 3, 0, 2, 3, 3, 2, 3, 0, 3, 2, 2, 2, 3, 3, 0, 2, 3, 3, 0, 3, 3, 3, 0, 3, 3, 3, 3, 3, 3, 0])
1)设定好K的大小,随机选取K个点作为初始中心点; (2)计算每个点到这K个中心点的距离大小,选取最近的中心点,划分到以该中心点为中心的集群中去; (3)重新计算K个新集群的中心点; (4)如果中心点保持不变,则结束K-Means过程。否则,重复进行(2)、(3)步;
复制代码 import numpy as np x = np.random.randint(1,50,[20,1]) y = np.zeros(20) k = 3 #1) 选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心; def initcen(x,k): return x[:k] #2) 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类; def nearest(kc,i): d = abs(kc-i) w = np.where(d == np.min(d)) return w[0][0] def xclassify(x,y,kc): for i in range(x.shape[0]): y[i] = nearest(kc,x[i]) return y #3) 更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值; def kcmean(x,y,kc,k): l = list(kc) flag = False for c in range(k): m = np.where(y ==0) n = np.mean(x[m]) if l[c] != n: l[c] = n flag = True print(l,flag) return (np.array(l),flag) #4) 判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2) kc = initcen(x,k) flag = True print(x,y,kc,flag) while flag: y = xclassify(x,y,kc) kc,flag = kcmean(x,y,kc,k) print(y,kc) 复制代码