from sklearn.datasets import load_boston boston = load_boston() boston.keys() dict_keys(['data', 'target', 'feature_names', 'DESCR']) print(boston.DESCR) data=boston.data x=data[:,5] y=boston.target import matplotlib.pyplot as plt plt.scatter(x,y) plt.plot(x,w*x+b) plt.show() #加载分类库 from sklearn.linear_model import LinearRegression LineR=LinearRegression() #对库进行分类,从1开始,的第一列 LineR.fit(x.reshape(-1,1),y) w=LineR.coef_#斜率 b=LineR.intercept_#截距
#3、多元线性回归模型,建立13个变量与房价之间的预测模型,并检测模型好坏,并图形化显示检查结果 from sklearn.linear_model import LinearRegression lineR = LinearRegression() lineR.fit(boston.data,y) w = lineR.coef_ b = lineR.intercept_ import matplotlib.pyplot as plt x=boston.data[:,12].reshape(-1,1)#拿出数据集的全部列进行分类预处理,做训练集 y=boston.target#划分测试集 plt.figure(figsize=(10,6)) #指定显示图大小 plt.scatter(x,y) from sklearn.linear_model import LinearRegression lineR=LinearRegression() lineR.fit(x,y) y_pred=lineR.predict(x) plt.plot(x,y_pred,'green') print(w,b) plt.show()
#4. 一元多项式回归模型,建立一个变量与房价之间的预测模型,并图形化显示。 from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(degree=2) x_poly = poly.fit_transform(x) lrp = LinearRegression() lrp.fit(x_poly,y) y_poly_pred = lrp.predict(x_poly) plt.scatter(x,y) plt.plot(x,y_poly_pred,'r') plt.show() from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(degree=2) x_poly = poly.fit_transform(x) lrp = LinearRegression() lrp.fit(x_poly,y) plt.scatter(x,y) plt.scatter(x,y_pred) plt.scatter(x,y_poly_pred) #多项回归 plt.show()