叠积木(加权并查集)

叠积木

题目描述:
约翰和贝西在叠积木。共有30000块积木,编号为1到30000。一开始,这些积木放在地上,自然地分成N堆。贝西接受约翰的指示,把一些积木叠在另一些积木的上面。一旦两块积木相叠, 彼此就再也不会分开了,所以最后叠在一起的积木会越来越高。约翰让贝西依次执行P条操作,操作分为两种:
第一种是移动操作,格式为“移动X到Y的上面”。X和Y代表两块积木的编号,意思是将X所的那堆积木,整体叠放到Y所在的那堆积木之上;
第二种是统计操作,格式为“统计Z下方的积木数量”。Z代表一块积木的编号,意思是贝西需要报告在编号为Z的积木之下还有多少块积木
请编写一个程序,帮助贝西回答每条统计问题。
输入输出格式
输入格式:
第一行:单个整数:P,1≤P≤10^5
第二行到第P + 1行:每行描述一条命令,如果这行开头的字母是 M,代表一条移动命令,后面的两个整数代表上文中的X和Y;如果开头字母是 C,代表一条统计命令。后面的整数代表上文中的Z,保证所有的移动命令都有意义,X和Y不会已经出现在同一堆积木里
输出格式:
对每一个统计命令,输出正确回答,用换行符分开每个查询的结果
输入输出样例
输入样例:
6
M 1 6
C 1
M 2 4
M 2 6
C 3
C 4
输出样例:
1
0
2
思路
数组top[x]表示x所属的栈顶元素。
数组cnt[x]表示x到栈底的元素个数。
数组father[x]表示x的栈底元素。

#include<iostream>
using namespace std;
const int maxn=30010;
int n,father[maxn],cnt[maxn],top[maxn];
char c;
int find(int x)
{
    if(father[x]==x)
    return x;
    int fa=father[x];
    father[x]=find(fa);
    cnt[x]+=cnt[fa];
    top[x]=top[fa];
    return father[x];
}
void unionn(int f1,int f2)
{
    father[f1]=f2;
    find(top[f2]);
    cnt[f1]=cnt[top[f2]]+1;
    top[f2]=top[f1];
}
int main()
{
    int x,y;
    cin>>n;
    for(int i=1;i<=maxn;i++)
    father[i]=top[i]=i;
    for(int i=1;i<=n;i++)
    {
        cin>>c;
        if(c=='M')
        {
            cin>>x>>y;
            int f1=find(x);
            int f2=find(y);
            if(f1!=f2)
            unionn(f1,f2);
        }
        else
        {
            cin>>x;
            find(x);
            cout<<cnt[x]<<endl;
        }
    }
    return 0;
}
posted @ 2016-08-10 15:16  抽空的太阳  阅读(400)  评论(0编辑  收藏  举报