深度学习-pytorch-basic-002

from __future__ import print_function
import torch as t
x = t.Tensor(5, 3)  # 构建 (5, 3) 的矩阵,只是分配空间,未初始化
print(x)
tensor([[1.0194e-38, 8.4490e-39, 1.0469e-38],
        [9.3674e-39, 9.9184e-39, 8.7245e-39],
        [9.2755e-39, 8.9082e-39, 9.9184e-39],
        [8.4490e-39, 9.6429e-39, 1.0653e-38],
        [1.0469e-38, 4.2246e-39, 1.0378e-38]])
# 使用[0, 1]均匀分布 随机初始化二维数组
x =t.rand(5, 3)
print(x)
tensor([[0.8813, 0.9889, 0.6149],
        [0.8595, 0.5743, 0.0719],
        [0.8653, 0.6924, 0.2119],
        [0.1017, 0.0243, 0.4142],
        [0.9373, 0.1185, 0.6594]])
x.size()
torch.Size([5, 3])
y = t.rand(5, 3)
x + y
tensor([[1.4673, 1.1781, 1.6074],
        [1.8543, 1.0660, 0.6873],
        [1.6326, 1.3947, 0.5899],
        [0.1402, 0.1022, 0.8971],
        [1.9228, 0.4745, 1.2459]])
t.add(x, y)
tensor([[1.4673, 1.1781, 1.6074],
        [1.8543, 1.0660, 0.6873],
        [1.6326, 1.3947, 0.5899],
        [0.1402, 0.1022, 0.8971],
        [1.9228, 0.4745, 1.2459]])
result = t.Tensor(5, 3)  # 预分配空间
print(result)
t.add(x, y, out=result)    # 结果输出到result
result
tensor([[8.4490e-39, 9.6428e-39, 8.4490e-39],
        [9.6429e-39, 9.2755e-39, 1.0286e-38],
        [9.0919e-39, 8.9082e-39, 9.2755e-39],
        [8.4490e-39, 9.6429e-39, 4.6838e-39],
        [8.4489e-39, 1.1112e-38, 4.1328e-39]])





tensor([[1.4673, 1.1781, 1.6074],
        [1.8543, 1.0660, 0.6873],
        [1.6326, 1.3947, 0.5899],
        [0.1402, 0.1022, 0.8971],
        [1.9228, 0.4745, 1.2459]])
print("最初的y:")
print(y)

print("第一次相加后的y:")
y.add(x)  # 普通加法 不改变y的内容
print(y)

print("第二次加,y:")
y.add_(x) # inplace的加法, y被覆盖
print(y)
最初的y:
tensor([[0.5859, 0.1892, 0.9925],
        [0.9948, 0.4917, 0.6154],
        [0.7673, 0.7023, 0.3780],
        [0.0385, 0.0779, 0.4829],
        [0.9855, 0.3560, 0.5865]])
第一次相加后的y:
tensor([[0.5859, 0.1892, 0.9925],
        [0.9948, 0.4917, 0.6154],
        [0.7673, 0.7023, 0.3780],
        [0.0385, 0.0779, 0.4829],
        [0.9855, 0.3560, 0.5865]])
第二次加,y:
tensor([[1.4673, 1.1781, 1.6074],
        [1.8543, 1.0660, 0.6873],
        [1.6326, 1.3947, 0.5899],
        [0.1402, 0.1022, 0.8971],
        [1.9228, 0.4745, 1.2459]])

注意: 函数明后面带_ 会修改Tensorb本身, 不带_的函数会返回一个新的Tensor,不改变输入本身

切片操作

print(x)
x[:, 1]  # 行不管 取出第二列
tensor([[0.8813, 0.9889, 0.6149],
        [0.8595, 0.5743, 0.0719],
        [0.8653, 0.6924, 0.2119],
        [0.1017, 0.0243, 0.4142],
        [0.9373, 0.1185, 0.6594]])





tensor([0.9889, 0.5743, 0.6924, 0.0243, 0.1185])
a = t.ones(5)  # 长度为5 的一维向量
a

tensor([1., 1., 1., 1., 1.])
b = a.numpy()  # conver to a numpy obj
b
array([1., 1., 1., 1., 1.], dtype=float32)
import numpy as np
a = np.ones(5)
print(a)
b = t.from_numpy(a)  # numpy --> Tensor
print(b)
[1. 1. 1. 1. 1.]
tensor([1., 1., 1., 1., 1.], dtype=torch.float64)
b.add_(1)
print(a)
print(b)  # Tensor numpy 共享内存 同时发生变化b
[3. 3. 3. 3. 3.]
tensor([3., 3., 3., 3., 3.], dtype=torch.float64)

autograd.Variable 是Autograd的核心类 调用.callback实现反向传播,自动计算所有的梯度

from torch.autograd import Variable
x = Variable(t.ones(2, 2), requires_grad=True)
print(x)
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
y = x.sum()
y
tensor(4., grad_fn=<SumBackward0>)
y.grad_fn
<SumBackward0 at 0x20fe8155390>
y.backward()  # 反向传播 计算梯度

# y = x.sum() = (x[0][0] + x[0][1] + x[1][0] +x[1][1])
x.grad
tensor([[1., 1.],
        [1., 1.]])
y.backward()
x.grad
tensor([[2., 2.],
        [2., 2.]])

grad在反向传播过程中是累加的, 这意味着 每次运行反向传播,梯度都会累加之前的梯度, 所以反向传播之前需要把梯度清零

x.grad.zero_()  # zero_ 梯度清零操作 会覆盖x.grad原有的值
tensor([[0., 0.],
        [0., 0.]])
x.grad
tensor([[0., 0.],
        [0., 0.]])
y.backward()
x.grad
tensor([[1., 1.],
        [1., 1.]])
x = Variable(t.ones(4, 5))
y = t.cos(x)

x_tensor_cos = t.cos(x.data)
print(y)
print(x_tensor_cos)
tensor([[0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
        [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
        [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
        [0.5403, 0.5403, 0.5403, 0.5403, 0.5403]])
tensor([[0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
        [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
        [0.5403, 0.5403, 0.5403, 0.5403, 0.5403],
        [0.5403, 0.5403, 0.5403, 0.5403, 0.5403]])

如何定义神经网络

import torch.nn as nn
import torch.nn.functional as F

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        # Conv2d 输入通道 输出通道 卷积核
        self.conv1 = nn.Conv2d(1, 6, 5)  # 1 表示图片为单通道, 6表示输出通道数为6   5表示卷积核为5*5
        self.conv2 = nn.Conv2d(6, 16, 5)
        
        self.fc1 = nn.Linear(16*5*5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)
        
    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), 2)
        
        x = x.view(x.size()[0], -1)  # reshape
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
net = Net()
print(net)
Net(
  (conv1): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
  (conv2): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
  (fc1): Linear(in_features=400, out_features=120, bias=True)
  (fc2): Linear(in_features=120, out_features=84, bias=True)
  (fc3): Linear(in_features=84, out_features=10, bias=True)
)
parmas = list(net.parameters())
print(len(parmas))
10
for name, parameters in net.named_parameters():
    print(name, ":", parameters.size())
conv1.weight : torch.Size([6, 1, 5, 5])
conv1.bias : torch.Size([6])
conv2.weight : torch.Size([16, 6, 5, 5])
conv2.bias : torch.Size([16])
fc1.weight : torch.Size([120, 400])
fc1.bias : torch.Size([120])
fc2.weight : torch.Size([84, 120])
fc2.bias : torch.Size([84])
fc3.weight : torch.Size([10, 84])
fc3.bias : torch.Size([10])

forward 的输出输出都是Variable, 只有Variable才具有自动求导的功能,Tensor是没有的, 所以在输入的时候需要把Tensor 封装成Variable

input = Variable(t.randn(1, 1, 32, 32))  # 一个图片 一个通道 28*28
out = net(input)
out.size()
torch.Size([1, 10])
net.zero_grad()  # 所有参数的梯度清零
out.backward(Variable(t.ones(1, 10)))  # 反向传播

torch.nn 只支持mini-batches 即每次的输入必须是一个batch,如果只想输入单个样本,使用input.unsqueeze_(0) 0位置扩充一个维度,将batch_size设置为1

损失函数

output = net(input)
print(output)
target = Variable(t.arange(0, 10)).float()
target.unsqueeze_(0)
       
print(target)
criterion = nn.MSELoss()
loss = criterion(output, target)
loss
tensor([[-0.0576,  0.0641, -0.0303, -0.0565, -0.0330,  0.0690,  0.0637,  0.1712,
          0.0882, -0.1025]], grad_fn=<AddmmBackward0>)
tensor([[0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]])





tensor(28.2247, grad_fn=<MseLossBackward0>)
loss.grad_fn
<MseLossBackward0 at 0x20ff0715180>
# .backward 运行前后的梯度 变化比较
net.zero_grad()  # 把net中所有可学习的参数梯度清零
print("反向传播之前的conv1.bias的梯度:")
print(net.conv1.bias.grad)

print("执行反向传播...")
loss.backward()

print("反向传播之后的conv1.bias的梯度:")
print(net.conv1.bias.grad)
反向传播之前的conv1.bias的梯度:
None
执行反向传播...
反向传播之后的conv1.bias的梯度:
tensor([ 0.0441, -0.0690,  0.0346, -0.0465,  0.0828, -0.1356])

优化器

# 手动实现
# weight = weight - learning_rate*grad
learning_rate = 0.01
for f in net.parameters():
    f.data.sub_(f.grad.data*learning_rate)  
import torch.optim as optim
# 定义优化器
optimizer = optim.SGD(net.parameters(), lr=0.01)

# 梯度清零
optimizer.zero_grad()  # 效果与net.zero_grad()效果是一样的

# 计算损失
output = net(input)
loss = criterion(output, target)

# 反向传播
loss.backward()

# 更新参数
optimizer.step()
posted @   jack-chen666  阅读(4)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 为什么说在企业级应用开发中,后端往往是效率杀手?
· 本地部署DeepSeek后,没有好看的交互界面怎么行!
· 趁着过年的时候手搓了一个低代码框架
· 推荐一个DeepSeek 大模型的免费 API 项目!兼容OpenAI接口!
· 用 C# 插值字符串处理器写一个 sscanf
历史上的今天:
2023-08-28 java基础-运算符--day03
点击右上角即可分享
微信分享提示