G7、Semi-Supervised GAN 理论与实战
- 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
- 🍖 原作者:K同学啊
- 🚀 文章来源:K同学的学习圈子
问题由来¶
如果我们生成的图像是带有标签的,例如数字0-9,那为什么要鉴别器判断输入图像为真假,而不直接判断图像是0-9中的哪一个数字呢,这样的鉴别效果不是更好吗
一、SGAN理论基础¶
SGAN将产生式对抗网络(GAN)拓展到半监督学习,通过强制判别器D来输出类别标签。我们在一个数据集上训练一个生成器G 以及 一个判别器D,输入是N类当中的一个。在训练的时候,判别器D被用于预测输入是属于 N+1类中的哪一个,这个N+1是对应了生成器G的输出,这里的判别器D同时也充当起了分类器C的效果。这种方法可以用于训练效果更好的判别器D,并且可以比普通的GAN 产生更加高质量的样本。Semi-Supervised GAN有如下优点:
- 对GANs做了一个新的扩展,允许它同时学习一个生成模型和一个分类器。我们把这个扩展叫做半监督GAN或SGAN
- 论文实验结果表明,SGAN在有限数据集上比没有生成部分的基准分类器提升了分类性能
- 论文实验结果表明,SGAN可以显著地提升生成样本的质量并降低生成器的训练时间
通过生成的效果图可以明显发现普通DCGAN算法与SGAN算法性能优劣
二、代码实现¶
1、配置代码¶
In [ ]:
import argparse
import os
import numpy as np
import math
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch
# 创建保存生成图像的文件夹
os.makedirs("images", exist_ok=True)
# 使用 argparse 解析命令行参数
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=50, help="训练的轮数")
parser.add_argument("--batch_size", type=int, default=64, help="每个批次的样本数量")
parser.add_argument("--lr", type=float, default=0.0002, help="Adam 优化器的学习率")
parser.add_argument("--b1", type=float, default=0.5, help="Adam 优化器的第一个动量衰减参数")
parser.add_argument("--b2", type=float, default=0.999, help="Adam 优化器的第二个动量衰减参数")
parser.add_argument("--n_cpu", type=int, default=8, help="用于批次生成的 CPU 线程数")
parser.add_argument("--latent_dim", type=int, default=100, help="潜在空间的维度")
parser.add_argument("--num_classes", type=int, default=10, help="数据集的类别数")
parser.add_argument("--img_size", type=int, default=32, help="每个图像的尺寸(高度和宽度相等)")
parser.add_argument("--channels", type=int, default=1, help="图像的通道数(灰度图像通道数为 1)")
parser.add_argument("--sample_interval", type=int, default=400, help="图像采样间隔")
opt = parser.parse_args(['--batch_size','8192'])
print(opt)
# 如果 GPU 可用,则使用 CUDA 加速
cuda = True if torch.cuda.is_available() else False
Namespace(n_epochs=50, batch_size=8192, lr=0.0002, b1=0.5, b2=0.999, n_cpu=8, latent_dim=100, num_classes=10, img_size=32, channels=1, sample_interval=400)
2、初始化权重¶
In [ ]:
def weights_init_normal(m):
classname = m.__class__.__name__
if classname.find("Conv") != -1:
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find("BatchNorm") != -1:
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
3、定义算法模型¶
In [ ]:
import torch.nn as nn
class Generator(nn.Module):
def __init__(self):
super(Generator, self).__init__()
# 创建一个标签嵌入层,用于将条件标签映射到潜在空间
self.label_emb = nn.Embedding(opt.num_classes, opt.latent_dim)
# 初始化图像尺寸,用于上采样之前
self.init_size = opt.img_size // 4 # Initial size before upsampling
# 第一个全连接层,将随机噪声映射到合适的维度
self.l1 = nn.Sequential(nn.Linear(opt.latent_dim, 128 * self.init_size ** 2))
# 生成器的卷积块
self.conv_blocks = nn.Sequential(
nn.BatchNorm2d(128),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 128, 3, stride=1, padding=1),
nn.BatchNorm2d(128, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 64, 3, stride=1, padding=1),
nn.BatchNorm2d(64, 0.8),
nn.LeakyReLU(0.2, inplace=True),
nn.Conv2d(64, opt.channels, 3, stride=1, padding=1),
nn.Tanh(),
)
def forward(self, noise):
out = self.l1(noise)
out = out.view(out.shape[0], 128, self.init_size, self.init_size)
img = self.conv_blocks(out)
return img
class Discriminator(nn.Module):
def __init__(self):
super(Discriminator, self).__init__()
def discriminator_block(in_filters, out_filters, bn=True):
"""返回每个鉴别器块的层"""
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]
if bn:
block.append(nn.BatchNorm2d(out_filters, 0.8))
return block
# 鉴别器的卷积块
self.conv_blocks = nn.Sequential(
*discriminator_block(opt.channels, 16, bn=False),
*discriminator_block(16, 32),
*discriminator_block(32, 64),
*discriminator_block(64, 128),
)
# 下采样图像的高度和宽度
ds_size = opt.img_size // 2 ** 4
# 输出层
self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid()) # 用于鉴别真假的输出层
self.aux_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, opt.num_classes + 1), nn.Softmax()) # 用于鉴别类别的输出层
def forward(self, img):
out = self.conv_blocks(img)
out = out.view(out.shape[0], -1)
validity = self.adv_layer(out)
label = self.aux_layer(out)
return validity, label
4、配置模型¶
In [ ]:
# 定义损失函数
adversarial_loss = torch.nn.BCELoss() # 二元交叉熵损失,用于对抗训练
auxiliary_loss = torch.nn.CrossEntropyLoss() # 交叉熵损失,用于辅助分类
# 初始化生成器和鉴别器
generator = Generator() # 创建生成器实例
discriminator = Discriminator() # 创建鉴别器实例
# 如果使用GPU,将模型和损失函数移至GPU上
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
auxiliary_loss.cuda()
# 初始化模型权重
generator.apply(weights_init_normal) # 初始化生成器的权重
discriminator.apply(weights_init_normal) # 初始化鉴别器的权重
# 配置数据加载器
os.makedirs("./data/mnist_G7", exist_ok=True) # 创建存储MNIST数据集的文件夹
dataloader = torch.utils.data.DataLoader(
datasets.MNIST(
"./data/mnist_G7",
train=True,
download=True,
transform=transforms.Compose(
[transforms.Resize(opt.img_size), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
),
),
batch_size=opt.batch_size,
shuffle=True,
)
# 优化器
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) # 生成器的优化器
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) # 鉴别器的优化器
# 根据是否使用GPU选择数据类型
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
Downloading http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz
Using downloaded and verified file: ./data/mnist_G7\MNIST\raw\train-images-idx3-ubyte.gz
Extracting ./data/mnist_G7\MNIST\raw\train-images-idx3-ubyte.gz to ./data/mnist_G7\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/train-labels-idx1-ubyte.gz
Using downloaded and verified file: ./data/mnist_G7\MNIST\raw\train-labels-idx1-ubyte.gz
Extracting ./data/mnist_G7\MNIST\raw\train-labels-idx1-ubyte.gz to ./data/mnist_G7\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-images-idx3-ubyte.gz
Using downloaded and verified file: ./data/mnist_G7\MNIST\raw\t10k-images-idx3-ubyte.gz
Extracting ./data/mnist_G7\MNIST\raw\t10k-images-idx3-ubyte.gz to ./data/mnist_G7\MNIST\raw
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz
Downloading http://yann.lecun.com/exdb/mnist/t10k-labels-idx1-ubyte.gz to ./data/mnist_G7\MNIST\raw\t10k-labels-idx1-ubyte.gz
100%|██████████████████████████████████████████████████████████████████████████████████████| 4542/4542 [00:00<?, ?it/s]
Extracting ./data/mnist_G7\MNIST\raw\t10k-labels-idx1-ubyte.gz to ./data/mnist_G7\MNIST\raw
5、训练模型¶
In [ ]:
for epoch in range(opt.n_epochs):
for i, (imgs, labels) in enumerate(dataloader):
batch_size = imgs.shape[0]
# 定义对抗训练的标签
valid = Variable(FloatTensor(batch_size, 1).fill_(1.0), requires_grad=False) # 用于真实样本
fake = Variable(FloatTensor(batch_size, 1).fill_(0.0), requires_grad=False) # 用于生成样本
fake_aux_gt = Variable(LongTensor(batch_size).fill_(opt.num_classes), requires_grad=False) # 用于生成样本的类别标签
# 配置输入数据
real_imgs = Variable(imgs.type(FloatTensor)) # 真实图像
labels = Variable(labels.type(LongTensor)) # 真实类别标签
# -----------------
# 训练生成器
# -----------------
optimizer_G.zero_grad()
# 采样噪声和类别标签作为生成器的输入
z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, opt.latent_dim))))
# 生成一批图像
gen_imgs = generator(z)
# 计算生成器的损失,衡量生成器欺骗鉴别器的能力
validity, _ = discriminator(gen_imgs)
g_loss = adversarial_loss(validity, valid)
g_loss.backward()
optimizer_G.step()
# ---------------------
# 训练鉴别器
# ---------------------
optimizer_D.zero_grad()
# 真实图像的损失
real_pred, real_aux = discriminator(real_imgs)
d_real_loss = (adversarial_loss(real_pred, valid) + auxiliary_loss(real_aux, labels)) / 2
# 生成图像的损失
fake_pred, fake_aux = discriminator(gen_imgs.detach())
d_fake_loss = (adversarial_loss(fake_pred, fake) + auxiliary_loss(fake_aux, fake_aux_gt)) / 2
# 总的鉴别器损失
d_loss = (d_real_loss + d_fake_loss) / 2
# 计算鉴别器准确率
pred = np.concatenate([real_aux.data.cpu().numpy(), fake_aux.data.cpu().numpy()], axis=0)
gt = np.concatenate([labels.data.cpu().numpy(), fake_aux_gt.data.cpu().numpy()], axis=0)
d_acc = np.mean(np.argmax(pred, axis=1) == gt)
d_loss.backward()
optimizer_D.step()
batches_done = epoch * len(dataloader) + i
if batches_done % opt.sample_interval == 0:
save_image(gen_imgs.data[:25], "images/%d.png" % batches_done, nrow=5, normalize=True)
print(
"[Epoch %d/%d] [Batch %d/%d] [D loss: %f, acc: %d%%] [G loss: %f]"
% (epoch, opt.n_epochs, i, len(dataloader), d_loss.item(), 100 * d_acc, g_loss.item())
)
D:\Code\Anaconda\envs\dl\lib\site-packages\torch\nn\modules\container.py:217: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.
input = module(input)
[Epoch 0/50] [Batch 7/8] [D loss: 1.544445, acc: 41%] [G loss: 0.692882]
[Epoch 1/50] [Batch 7/8] [D loss: 1.543716, acc: 49%] [G loss: 0.682594]
[Epoch 2/50] [Batch 7/8] [D loss: 1.540643, acc: 50%] [G loss: 0.680204]
[Epoch 3/50] [Batch 7/8] [D loss: 1.535141, acc: 50%] [G loss: 0.649317]
[Epoch 4/50] [Batch 7/8] [D loss: 1.516119, acc: 49%] [G loss: 0.558261]
[Epoch 5/50] [Batch 7/8] [D loss: 1.432424, acc: 50%] [G loss: 0.559069]
[Epoch 6/50] [Batch 7/8] [D loss: 1.389404, acc: 50%] [G loss: 0.632853]
[Epoch 7/50] [Batch 7/8] [D loss: 1.380128, acc: 50%] [G loss: 0.626831]
[Epoch 8/50] [Batch 7/8] [D loss: 1.369062, acc: 50%] [G loss: 0.677921]
[Epoch 9/50] [Batch 7/8] [D loss: 1.370481, acc: 50%] [G loss: 0.664256]
[Epoch 10/50] [Batch 7/8] [D loss: 1.374016, acc: 50%] [G loss: 0.635747]
[Epoch 11/50] [Batch 7/8] [D loss: 1.371492, acc: 50%] [G loss: 0.678369]
[Epoch 12/50] [Batch 7/8] [D loss: 1.368379, acc: 50%] [G loss: 0.700721]
[Epoch 13/50] [Batch 7/8] [D loss: 1.368315, acc: 50%] [G loss: 0.657885]
[Epoch 14/50] [Batch 7/8] [D loss: 1.376032, acc: 50%] [G loss: 0.690881]
[Epoch 15/50] [Batch 7/8] [D loss: 1.366467, acc: 50%] [G loss: 0.727538]
[Epoch 16/50] [Batch 7/8] [D loss: 1.369054, acc: 50%] [G loss: 0.678619]
[Epoch 17/50] [Batch 7/8] [D loss: 1.362761, acc: 50%] [G loss: 0.656075]
[Epoch 18/50] [Batch 7/8] [D loss: 1.374287, acc: 50%] [G loss: 0.685217]
[Epoch 19/50] [Batch 7/8] [D loss: 1.374793, acc: 50%] [G loss: 0.727006]
[Epoch 20/50] [Batch 7/8] [D loss: 1.366290, acc: 50%] [G loss: 0.730007]
[Epoch 21/50] [Batch 7/8] [D loss: 1.367087, acc: 50%] [G loss: 0.690608]
[Epoch 22/50] [Batch 7/8] [D loss: 1.369826, acc: 50%] [G loss: 0.642754]
[Epoch 23/50] [Batch 7/8] [D loss: 1.368557, acc: 50%] [G loss: 0.681226]
[Epoch 24/50] [Batch 7/8] [D loss: 1.374677, acc: 50%] [G loss: 0.709752]
[Epoch 25/50] [Batch 7/8] [D loss: 1.368476, acc: 50%] [G loss: 0.722963]
[Epoch 26/50] [Batch 7/8] [D loss: 1.368087, acc: 50%] [G loss: 0.695970]
[Epoch 27/50] [Batch 7/8] [D loss: 1.371420, acc: 50%] [G loss: 0.656335]
[Epoch 28/50] [Batch 7/8] [D loss: 1.367887, acc: 50%] [G loss: 0.678238]
[Epoch 29/50] [Batch 7/8] [D loss: 1.367137, acc: 50%] [G loss: 0.704793]
[Epoch 30/50] [Batch 7/8] [D loss: 1.372444, acc: 50%] [G loss: 0.699853]
[Epoch 31/50] [Batch 7/8] [D loss: 1.370048, acc: 50%] [G loss: 0.692634]
[Epoch 32/50] [Batch 7/8] [D loss: 1.365426, acc: 50%] [G loss: 0.697769]
[Epoch 33/50] [Batch 7/8] [D loss: 1.370704, acc: 50%] [G loss: 0.676067]
[Epoch 34/50] [Batch 7/8] [D loss: 1.370108, acc: 50%] [G loss: 0.673559]
[Epoch 35/50] [Batch 7/8] [D loss: 1.367148, acc: 50%] [G loss: 0.693939]
[Epoch 36/50] [Batch 7/8] [D loss: 1.372817, acc: 50%] [G loss: 0.691008]
[Epoch 37/50] [Batch 7/8] [D loss: 1.370204, acc: 50%] [G loss: 0.693787]
[Epoch 38/50] [Batch 7/8] [D loss: 1.365855, acc: 50%] [G loss: 0.705938]
[Epoch 39/50] [Batch 7/8] [D loss: 1.367928, acc: 50%] [G loss: 0.707550]
[Epoch 40/50] [Batch 7/8] [D loss: 1.369588, acc: 50%] [G loss: 0.693974]
[Epoch 41/50] [Batch 7/8] [D loss: 1.371375, acc: 50%] [G loss: 0.666972]
[Epoch 42/50] [Batch 7/8] [D loss: 1.366990, acc: 50%] [G loss: 0.679381]
[Epoch 43/50] [Batch 7/8] [D loss: 1.370401, acc: 50%] [G loss: 0.696619]
[Epoch 44/50] [Batch 7/8] [D loss: 1.369853, acc: 50%] [G loss: 0.704175]
[Epoch 45/50] [Batch 7/8] [D loss: 1.366559, acc: 50%] [G loss: 0.708872]
[Epoch 46/50] [Batch 7/8] [D loss: 1.366858, acc: 50%] [G loss: 0.694374]
[Epoch 47/50] [Batch 7/8] [D loss: 1.370696, acc: 50%] [G loss: 0.662108]
[Epoch 48/50] [Batch 7/8] [D loss: 1.371429, acc: 50%] [G loss: 0.682755]
[Epoch 49/50] [Batch 7/8] [D loss: 1.368934, acc: 50%] [G loss: 0.710603]
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 全程不用写代码,我用AI程序员写了一个飞机大战
· DeepSeek 开源周回顾「GitHub 热点速览」
· MongoDB 8.0这个新功能碉堡了,比商业数据库还牛
· 记一次.NET内存居高不下排查解决与启示
· 白话解读 Dapr 1.15:你的「微服务管家」又秀新绝活了