leetcode53. 最大子序和 🌟
题目:
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
来源:力扣(LeetCode)
解答:
leetcode优秀方案(来自力扣答案统计页,没有明确作者是谁,可留言告知):
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
class Solution: """ 作者:pandawakaka 链接:https://leetcode-cn.com/problems/two-sum/solution/bao-li-qiu-jie-by-pandawakaka/ """ def maxSubArray(self, nums: List[int]) -> int: tmp = nums[0] max_ = tmp n = len(nums) for i in range(1,n): # 当当前序列加上此时的元素的值大于tmp的值,说明最大序列和可能出现在后续序列中,记录此时的最大值 if tmp + nums[i]>nums[i]: max_ = max(max_, tmp+nums[i]) tmp = tmp + nums[i] else: #当tmp(当前和)小于下一个元素时,当前最长序列到此为止。以该元素为起点继续找最大子序列, # 并记录此时的最大值 max_ = max(max_, tmp, tmp+nums[i], nums[i]) tmp = nums[i] return max_
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
class Solution: """ 作者:pandawakaka 链接:https://leetcode-cn.com/problems/two-sum/solution/bao-li-qiu-jie-by-pandawakaka/ 分治法:它的最大子序和要么在左半边,要么在右半边,要么是穿过中间,对于左右边的序列,情况也是一样,因此可以用递归处理。 中间部分的则可以直接计算出来,时间复杂度应该是 O(nlogn) """ def maxSubArray(self, nums: List[int]) -> int: n = len(nums) #递归终止条件 if n == 1: return nums[0] else: #递归计算左半边最大子序和 max_left = self.maxSubArray(nums[0:len(nums) // 2]) #递归计算右半边最大子序和 max_right = self.maxSubArray(nums[len(nums) // 2:len(nums)]) #计算中间的最大子序和,从右到左计算左边的最大子序和,从左到右计算右边的最大子序和,再相加 max_l = nums[len(nums) // 2 - 1] tmp = 0 for i in range(len(nums) // 2 - 1, -1, -1): tmp += nums[i] max_l = max(tmp, max_l) max_r = nums[len(nums) // 2] tmp = 0 for i in range(len(nums) // 2, len(nums)): tmp += nums[i] max_r = max(tmp, max_r) #返回三个中的最大值 return max(max_right,max_left,max_l+max_r)
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
class Solution: """ 作者:jyd 链接:https://leetcode-cn.com/problems/two-sum/solution/maximum-subarray-dong-tai-gui-hua-by-jyd/ 动态规划典型题:遍历数组,记录max(nums[i-1] + nums[i], nums[i])(含义为保留前面累加和与以当前元素为开始,哪种更优), 即判断后面subarray是否舍去前面的累计加和,并继续遍历下一元素。 最后return加和中最大值。 """ def maxSubArray(self, nums: List[int]) -> int: for i in range(1, len(nums)): nums[i] = max(nums[i - 1] + nums[i], nums[i]) return max(nums)
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
class Solution: def maxSubArray(self, nums): max_sum = nums[0] for i in range(len(nums)): temp = 0 for j in range(i, len(nums)): temp += nums[j] if temp > max_sum: max_sum = temp return max_sum
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
class Solution: def maxSubArray(self, nums) -> int: maxSum, curSum = float('-inf'), 0 for i in range(len(nums)): curSum += nums[i] if curSum > maxSum: maxSum = curSum if curSum < 0: curSum = 0 return maxSum