算法之简单选择排序和堆排序

3. 选择排序—简单选择排序(Simple Selection Sort)

基本思想:

在要排序的一组数中,选出最小(或者最大)的一个数与第1个位置的数交换;然后在剩下的数当中再找最小(或者最大)的与第2个位置的数交换,依次类推,直到第n-1个元素(倒数第二个数)和第n个元素(最后一个数)比较为止。

简单选择排序的示例:

操作方法:

第一趟,从n 个记录中找出关键码最小的记录与第一个记录交换;

第二趟,从第二个记录开始的n-1 个记录中再选出关键码最小的记录与第二个记录交换;

以此类推.....

第i 趟,则从第i 个记录开始的n-i+1 个记录中选出关键码最小的记录与第i 个记录交换,

直到整个序列按关键码有序。

void print(int a[], int n ,int i)
{
   cout<<""<<i+1 <<"趟 : ";
   for(int j= 0; j<8; j++)
   {
  cout<<a[j] <<" ";
   }
 cout<<endl;
}
/*** 数组的最小值 ** @return int 数组的键值 */
int SelectMinKey(int a[], int n, int i)
{
   int k = i;
   for(int j=i+1 ;j< n; ++j)
   {
      if(a[k] > a[j]) k = j;
 }
 return k;
}
/*** 选择排序 **/
void selectSort(int a[], int n)
{
   int key, tmp;
  for(int i = 0; i< n; ++i)
  {
    key = SelectMinKey(a, n,i);
    //选择最小的元素
     if(key != i)
     {
       tmp = a[i]; a[i] = a[key]; a[key] = tmp;
       //最小元素与第i位置元素互换 }
       print(a, n , i);
     }
  }
int main()
{
  int a[8] = {3,1,5,7,2,4,9,6};
  cout<<"初始值:";
  for(int j= 0; j<8; j++)
  {
    cout<<a[j] <<" ";
  }
  cout<<endl<<endl;
  selectSort(a, 8); print(a,8,8);  
}
简单选择排序的改进——二元选择排序

简单选择排序,每趟循环只能确定一个元素排序后的定位。我们可以考虑改进为每趟循环确定两个元素(当前趟最大和最小记录)的位置,从而减少排序所需的循环次数。改进后对n个数据进行排序,最多只需进行[n/2]趟循环即可。具体实现如下:

void SelectSort(int r[],int n) 
{
     int i ,j , min ,max, tmp;
    for (i=1 ;i <= n/2;i++) 
   {  
       // 做不超过n/2趟选择排序 
       min = i; max = i ; //分别记录最大和最小关键字记录位置
       for (j= i+1; j<= n-i; j++) 
      {
           if (r[j] > r[max])
          { 
    max = j ; continue ; 
          }  
           if (r[j]< r[min]) 
         { 
    min = j ; 
         }   
      }  
       //该交换操作还可分情况讨论以提高效率
      tmp = r[i-1]; r[i-1] = r[min]; r[min] = tmp;
      tmp = r[n-i]; r[n-i] = r[max]; r[max] = tmp; 
  } 
}

4. 选择排序—堆排序(Heap Sort)

堆排序是一种树形选择排序,是对直接选择排序的有效改进。

基本思想:

堆的定义如下:具有n个元素的序列(k1,k2,...,kn),当且仅当满足

时称之为堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)。
若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的。如:

(a)大顶堆序列:(96, 83,27,38,11,09)

  (b)  小顶堆序列:(12,36,24,85,47,30,53,91)

初始时把要排序的n个数的序列看作是一棵顺序存储的二叉树(一维数组存储二叉树),调整它们的存储序,使之成为一个堆,将堆顶元素输出,得到n 个元素中最小(或最大)的元素,这时堆的根节点的数最小(或者最大)。然后对前面(n-1)个元素重新调整使之成为堆,输出堆顶元素,得到n 个元素中次小(或次大)的元素。依此类推,直到只有两个节点的堆,并对它们作交换,最后得到有n个节点的有序序列。称这个过程为堆排序

因此,实现堆排序需解决两个问题:
1. 如何将n 个待排序的数建成堆;
2. 输出堆顶元素后,怎样调整剩余n-1 个元素,使其成为一个新堆。

首先讨论第二个问题:输出堆顶元素后,对剩余n-1元素重新建成堆的调整过程。
调整小顶堆的方法:

1)设有m 个元素的堆,输出堆顶元素后,剩下m-1 个元素。将堆底元素送入堆顶((最后一个元素与堆顶进行交换),堆被破坏,其原因仅是根结点不满足堆的性质。

2)将根结点与左、右子树中较小元素的进行交换。

3)若与左子树交换:如果左子树堆被破坏,即左子树的根结点不满足堆的性质,则重复方法 (2).

4)若与右子树交换,如果右子树堆被破坏,即右子树的根结点不满足堆的性质。则重复方法 (2).

5)继续对不满足堆性质的子树进行上述交换操作,直到叶子结点,堆被建成。

称这个自根结点到叶子结点的调整过程为筛选。如图:

再讨论对n 个元素初始建堆的过程。
建堆方法:对初始序列建堆的过程,就是一个反复进行筛选的过程。

1)n 个结点的完全二叉树,则最后一个结点是第个结点的子树。

2)筛选从第个结点为根的子树开始,该子树成为堆。

3)之后向前依次对各结点为根的子树进行筛选,使之成为堆,直到根结点。

如图建堆初始过程:无序序列:(49,38,65,97,76,13,27,49)

算法的实现:

从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。

void print(int a[], int n)
{  
    for(int j= 0; j<n; j++)
   {  
        cout<<a[j] <<"  ";  
    }  
    cout<<endl;  
}  

/*已知H[s…m]除了H[s] 外均满足堆的定义 
 * 调整H[s],使其成为大顶堆.即将对第s个结点为根的子树筛选,  
 * 
 * @param H是待调整的堆数组 
 * @param s是待调整的数组元素的位置 
 * @param length是数组的长度 */  
void HeapAdjust(int H[],int s, int length)  
{  
    int tmp  = H[s];  
    int child = 2*s+1; //左孩子结点的位置。(i+1 为当前调整结点的右孩子结点的位置)  
    while (child < length)
    {  
        if(child+1 <length && H[child]<H[child+1])
        { 
            // 如果右孩子大于左孩子(找到比当前待调整结点大的孩子结点)  
            ++child ;  
        }  
        if(H[s]<H[child]) 
       {  
            // 如果较大的子结点大于父结点  
            H[s] = H[child]; // 那么把较大的子结点往上移动,替换它的父结点  
            s = child;       // 重新设置s ,即待调整的下一个结点的位置  
            child = 2*s+1;  
        }  
        else 
       {            
        // 如果当前待调整结点大于它的左右孩子,则不需要调整,直接退出  
             break;  
        }  
        H[s] = tmp;         // 当前待调整的结点放到比其大的孩子结点位置上  
    }  
    print(H,length);  
}  
  
  /** 初始堆进行调整 
 * 将H[0..length-1]建成堆 
 * 调整完之后第一个元素是序列的最小的元素*/  

void BuildingHeap(int H[], int length)  
{   
    //最后一个有孩子的节点的位置 i=  (length -1) / 2  
    for (int i = (length -1) / 2 ; i >= 0; --i)  
        HeapAdjust(H,i,length);  
}  

/* 堆排序算法*/  

void HeapSort(int H[],int length)  
{  
    //初始堆  
    BuildingHeap(H, length);  
    //从最后一个元素开始对序列进行调整  
    for (int i = length - 1; i > 0; --i)  
    {  
        //交换堆顶元素H[0]和堆中最后一个元素  
        int temp = H[i]; H[i] = H[0]; H[0] = temp;  
        //每次交换堆顶元素和堆中最后一个元素之后,都要对堆进行调整  
        HeapAdjust(H,0,i);  
  }  
}   
  
int main()
{  
    int H[10] = {3,1,5,7,2,4,9,6,10,8};  
    cout<<"初始值:";  
    print(H,10);  
    HeapSort(H,10);  
    //selectSort(a, 8);  
    cout<<"结果:";  
    print(H,10);  
}

分析:

设树深度为k,  。从根到叶的筛选,元素比较次数至多2(k-1)次,交换记录至多k 次。所以,在建好堆后,排序过程中的筛选次数不超过下式:

而建堆时的比较次数不超过4n 次,因此堆排序最坏情况下,时间复杂度也为:O(nlogn )。

posted @ 2015-05-30 00:59  ChCaty  阅读(326)  评论(0编辑  收藏  举报