HDU - 4630 离线处理区间点对问题
题意:给定\(a[1...n]\),多次询问\([L,R]\)中的任意一对数使得\(gcd(a_i,a_j)\)最大
对于gcd,区间内至少存在两个相同的因子才能作为合法的解,存在两个相同因子且最大就是最优的解
对区间右端点进行离线排序,用线段树维护\([L,R]\)内最大的gcd(存在两次以上的因子)
具体的更新策略:记录因子\(j\)的上一次出现的地方\(last_j\),当\(last_j\)已存在时再插入\(last_j\)就能维护两次以上的信息,离线处理保证了后面的因子不会插入到当前查询范围的某个\(last_j\)中,具体看代码
#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define print(a) printf("%lld",(ll)a)
#define println(a) printf("%lld\n",(ll)a)
#define printbk(a) printf("%lld ",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int MAXN = 5e4+11;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct QAQ{
int l,r,id;
bool operator < (const QAQ &orz)const{
return r<orz.r;
}
}b[MAXN];
int ans[MAXN],a[MAXN],last[MAXN];
struct ST{
#define lc o<<1
#define rc o<<1|1
int mx[MAXN<<2];
void pu(int o){
mx[o]=max(mx[lc],mx[rc]);
}
void build(int o,int l,int r){
mx[o]=0;
if(l==r) return;
int mid=l+r>>1;
build(lc,l,mid);
build(rc,mid+1,r);
}
void update(int o,int l,int r,int k,int v){
if(l==r){mx[o]=max(mx[o],v);return;}
int mid=l+r>>1;
if(k<=mid) update(lc,l,mid,k,v);
else update(rc,mid+1,r,k,v);
pu(o);
}
ll query(int o,int l,int r,int L,int R){
if(L<=l&&r<=R) return mx[o];
int mid=l+r>>1;
ll ans=0;
if(L<=mid) ans=max(ans,query(lc,l,mid,L,R));
if(R>mid) ans=max(ans,query(rc,mid+1,r,L,R));
return ans;
}
}st;
int main(){
int T=read();
while(T--){
int n=read();
rep(i,1,n) a[i]=read();
int m=read();
memset(ans,0,sizeof ans);
memset(last,0,sizeof last);
int cur=1;
rep(i,1,m){
b[i].l=read();
b[i].r=read();
b[i].id=i;
}
sort(b+1,b+1+m);
st.build(1,1,n);
for(int i=1;i<=n;i++){
for(ll j=1;j*j<=a[i];j++) if(a[i]%j==0){
if(last[j]) st.update(1,1,n,last[j],j);
if(last[a[i]/j]&&a[i]!=j*j) st.update(1,1,n,last[a[i]/j],a[i]/j);
last[j]=i;
last[a[i]/j]=i;
}
while(cur<=m&&b[cur].r==i){
ans[b[cur].id]=st.query(1,1,n,b[cur].l,b[cur].r);
++cur;
}
}
rep(i,1,m) println(ans[i]);
}
return 0;
}