BZOJ - 3263 三维偏序
题意:定义元素为有序组(a,b,c),若存在x组(a_i,b_i,c_i)分别小于等于(a,b,c),则该元素的等级为x,求[0,n-1]等级的个数
cdq分治练手题,对a简单排序并去重,对b进行分治,对c进行树状数组维护
cdq分治与生搬硬套的树套树相比,优越性实在多太多了
#include<bits/stdc++.h>
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define rrep(i,j,k) for(int i=j;i>=k;i--)
#define erep(i,u) for(int i=head[u];~i;i=nxt[i])
#define print(a) printf("%lld",(ll)(a))
#define printbk(a) printf("%lld ",(ll)(a))
#define println(a) printf("%lld\n",(ll)(a))
using namespace std;
const int MAXN = 2e5+11;
const int MOD = 1e9+7;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct QUERY{
int a,b,c,val,ans;
bool operator < (const QUERY &rhs) const{ //分治时对b排序
if(b!=rhs.b) return b<rhs.b;
return c<rhs.c; //树状数组对c维护 //不要也可以
}
}Q[MAXN],tmp[MAXN],a[MAXN];
bool cmp(QUERY a,QUERY b){
if(a.a!=b.a) return a.a<b.a;
if(a.b!=b.b) return a.b<b.b;
return a.c<b.c;
}
int ans[MAXN],S,W,n,m;
struct FT{
ll ft[MAXN];
inline int lowbit(int x){return x&-x;}
void update(int k,int v){
while(k<=m){
ft[k]+=v;
k+=lowbit(k);
}
}
int query(int k){
int res=0;
while(k>0){
res+=ft[k];
k-=lowbit(k);
}
return res;
}
void clear(int k){
while(k<=m){
if(ft[k]){
ft[k]=0;
}else{
break;
}
k+=lowbit(k);
}
}
void init(){
memset(ft,0,sizeof ft);
}
}ft;
void solve(int l,int r){
if(l==r) return;
int mid=l+r>>1;
solve(l,mid);
solve(mid+1,r);
int p=l,q=mid+1,cnt=0;
while(p<=mid&&q<=r){
if(Q[p].b<=Q[q].b){
ft.update(Q[p].c,Q[p].val);
tmp[++cnt]=Q[p++];
}else{
Q[q].ans+=ft.query(Q[q].c);
tmp[++cnt]=Q[q++];
}
}
while(p<=mid) tmp[++cnt]=Q[p++];
while(q<=r){
Q[q].ans+=ft.query(Q[q].c);
tmp[++cnt]=Q[q++];
}
rep(i,l,p-1) ft.clear(Q[i].c);
rep(i,1,cnt) Q[i+l-1]=tmp[i];
}
int main(){
while(cin>>n>>m){
ft.init();
rep(i,1,n){
a[i].a=read();
a[i].b=read();
a[i].c=read();
}
sort(a+1,a+1+n,cmp);//保证a有序且可去重
int cnt=0,num=0;
rep(i,1,n){
++num;
if(a[i].a!=a[i+1].a||a[i].b!=a[i+1].b||a[i].c!=a[i+1].c){
Q[++cnt].a=a[i].a;
Q[cnt].b=a[i].b;
Q[cnt].c=a[i].c;
Q[cnt].val=num;
Q[cnt].ans=0;
num=0;
}
}
solve(1,cnt);
rep(i,1,cnt) ans[Q[i].ans+Q[i].val-1]+=Q[i].val;//xiuzheng
rep(i,0,n-1) println(ans[i]);
}
return 0;
}