[八分之一的男人]POJ - 1743 后缀数组 height分组 带详解

题意:求最长不可重叠的相同差值子串的长度

这道题算是拖了好几个月,现在花了点时间应该搞懂了不少,尝试分析一下

我们首先来解决一个退化的版本,求最长不可重叠的相同子串(差值为0)
比如\(aabaabaa\), 那么所求的子串有\(aab,aba,baa\)三个
如何求?不妨枚举.枚举是否有长度为\(k\)的最长不可重叠相同子串
可是后缀数组中并不能直接表示出子串,只能间接地用后缀来表示
长度为\(k\)的相同子串\(=>\)最大公共前缀长度为\(k\)的子串\(=>\)最大公共前缀长度大于等于\(k\)的后缀(注意非充要)
而我们所求的就是一个\(lcp\),我们应该分组,每一组内的各个后缀的\(lcp\)都大于等于\(k\),由\(lcp\)定义可转化为组内按\(sa\)排序\(height\)不得小于\(k\)
按照这个规则我们来看下上面的实例如何分组,这是枚举\(k=3\)时的情况
index=8 height[1]=0 \(a\)

index=7 height[2]=1 \(aa\)

index=4 height[3]=2 \(aabaa\)
index=1 height[4]=5 \(aabaabaa\)

index=5 height[5]=1 \(abaa\)
index=2 height[6]=4 \(abaabaa\)

index=6 height[7]=0 \(baa\)
index=3 height[8]=3 \(baabaa\)

我们注意到按照这样排序是没办法知道两个子串是否重叠,所以需要记录\(index\)
其中\(index\)是指该后缀首字符在字符串中的位置(1为首),也就是\(sa[i]\)
那么我们现在就有办法去搞了,因为每一组都保证了\(lcp>=k\),也就是如果重叠也算的话,每一组都是合法的分组(主要组内后缀个数大于1)
现在因为只有不可重叠才是合法条件所以需要剔除非法的后缀,既然有了\(sa\)值那就好办,如果组内任意两个后缀的\(index\)\(i,j\),那就需要\(i_{max}-j_{min}>=k\),表示该组至少有一对符合条件
至此,枚举\(k=3\)的情况为真,得到的分组按顺序恰有\(aab,aba,baa\)三个,其他情况依次类推二分下去就好

现在再来看原来的问题:求最长相同的差值的不可重叠子串,输出该长度
既然要相同的差值,我们把原串\(n\)个字符(值)转化为\(n-1\)个值的差分数组
同样枚举最长的相同值的不可重叠子串,如果能枚举出最大的\(k\)是成立的,那答案还原回来就是\(k+1\)
但是,需要注意的是对于\(index\),应该要满足\(i_{max}-j_{min}>k\),因为差分数组是必须要留出"空隙"的,否则遇到临界情况就是两个不可重叠子串恰好相连,而这个是差分子串,还原回来就是中间的值恰好被两个原串重复选取了,这也是条件轻微更改的原因
不过这道题的数据应该是随机生成的,即使不改也会AC
楼教主的题真的好劲啊

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 1e6+11;
const int oo = 0x3f3f3f3f;
const double eps = 1e-7;
typedef long long ll;
ll read(){
    ll x=0,f=1;register char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int str[maxn],n;
struct SA{
    int Rank[maxn],sa[maxn],tsa[maxn],A[maxn],B[maxn];
    int cntA[maxn],cntB[maxn];
    int height[maxn],best[maxn][30],n;//height[i]:第sa[i]与sa[i-1]的cp 
    void get(int nn){
		n=nn; 
        rep(i,0,666) cntA[i]=0;
        rep(i,1,n) cntA[str[i]]++;
        rep(i,1,666) cntA[i]+=cntA[i-1];
        rrep(i,n,1) sa[cntA[str[i]]--]=i;
        Rank[sa[1]]=1;
        rep(i,2,n){
            if(str[sa[i]]==str[sa[i-1]]){
                Rank[sa[i]]=Rank[sa[i-1]];
            }else{
                Rank[sa[i]]=1+Rank[sa[i-1]];
            }
        }
        for(int l=1;Rank[sa[n]]<n;l<<=1){
            rep(i,1,n) cntA[i]=cntB[i]=0;
            rep(i,1,n) cntA[A[i]=Rank[i]]++;
            rep(i,1,n) cntB[B[i]=(i+l<=n?Rank[i+l]:0)]++;
            rep(i,1,n) cntA[i]+=cntA[i-1],cntB[i]+=cntB[i-1];
            rrep(i,n,1) tsa[cntB[B[i]]--]=i;
            rrep(i,n,1) sa[cntA[A[tsa[i]]]--]=tsa[i];
            Rank[sa[1]]=1;
            rep(i,2,n){
                bool flag=A[sa[i]]==A[sa[i-1]]&&B[sa[i]]==B[sa[i-1]];
                flag=!flag;
                Rank[sa[i]]=Rank[sa[i-1]]+flag;
            }
        }
    }
    void ht(){
        int j=0;
        rep(i,1,n){
            if(j) j--;
            while(str[i+j]==str[sa[Rank[i]-1]+j]) j++;
            height[Rank[i]]=j;
        }
    }
    void rmq(){
        rep(i,1,n) best[i][0]=height[i];
        for(int i=1;(1<<i)<=n;i++){
            for(int j=1;j+(1<<i)-1<=n;j++){
                best[j][i]=min(best[j][i-1],best[j+(1<<(i-1))][i-1]);
            }
        }
    }
    int query(int l,int r){
        if(l==r)return -oo;
        if(l>r)swap(l,r);
        l++;
        int k=log2(r-l+1);
        return min(best[l][k],best[r-(1<<k)+1][k]);
    }
}sa;

bool check(int k){
	int mx=-oo,mn=oo;
	for(int i=2;i<=n;i++){
		if(sa.height[i]>=k){
			mx=max(mx,max(sa.sa[i],sa.sa[i-1]));
			mn=min(mn,min(sa.sa[i],sa.sa[i-1]));
			if(mx-mn>k)return 1;
		}else{
			mx=-oo;mn=oo;
		}
	}
	return 0;
}
int main(){
	while(scanf("%d",&n),n){
		rep(i,1,n) str[i]=read();
		if(n<5){
	 		printf("0\n");
	 		continue;
		}
		rep(i,1,n) str[i]=str[i+1]-str[i]+100;
		str[n]=0;n--;
		sa.get(n);
		sa.ht();
		int l=0,r=n,mid,ans=0;
		while(l<=r){
			mid=(l+r)>>1;
			if(check(mid)) l=mid+1,ans=mid;
			else r=mid-1;
		}
		if(ans+1>=5) println((ans+1));
		else println(0);
	}
	return 0;
}
posted @ 2018-02-23 22:10  Caturra  阅读(285)  评论(0编辑  收藏  举报