Max Sum
Max Sum
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
InputThe first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000). OutputFor each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 注意格式:这里有一个空行。 Case 2: 7 1 6
其实,我以前做过一次,也是改了半天,迷迷瞪瞪的不知道改了哪里。。。。。。。。这次记下来了。
题意:求给定的序列的最大的连续的子序列的和和从哪到哪的位置。
举个例子:6 1 -2 3 4 0 -9 则和最大为3+4+0; 这个0也算。
而且,如果第一位也是0,那么那个0也算,当如果序列全为负数,则应该输出最大的那个负数和他的位置。
就拿我写的这个来看,关键在两个if判断,这俩if是同级的,虽然是同级的,但是位置还是不可以替换,
因为存在全部都为负数的情况,你懂我的意思吧!!!!这里,max,sum,e,f,min(代表中间值)。比较sun+上了一个新的数和max的大小,
如果大了,就f后移一个,如果加上一个新的数后小与0了。
for(int i=1;i<=m;i++) { int node; scanf("%d",&node); sum+=node; if(sum>=max) { max=sum; e=min; f=i; } if(sum<0) { sum=0; min=i+1; }
AC 代码:
#include<iostream> #include<cstdio> using namespace std; int n; int main() { scanf("%d",&n); int k=0; for(int j=0;j<n;j++) { int m; scanf("%d",&m); int sum=0; int max=-1010; int e,f; int min=1; for(int i=1;i<=m;i++) { int node; scanf("%d",&node); sum+=node; if(sum>=max) { max=sum; e=min; f=i; } if(sum<0) { sum=0; min=i+1; } } k++; printf("Case %d:\n",k); printf("%d %d %d\n",max,e,f); if(k!=n) { printf("\n"); } } return 0; }
今天也是元气满满的一天!good luck!
我想要变得高一点,最好能伸手给你一片天。