普里姆算法
1、应用场景-修路问题
看一个应用场景和问题:
- 有胜利乡有7个村庄(A, B, C, D, E, F, G) ,现在需要修路把7个村庄连通
- 各个村庄的距离用边线表示(权) ,比如 A – B 距离 5公里
- 问:如何修路保证各个村庄都能连通,并且总的修建公路总里程最短?
思路: 将10条边,连接即可,但是总的里程数不是最小.
正确的思路,就是尽可能的选择少的路线,并且每条路线最小,保证总里程数最少.
2、最小生成树
修路问题本质就是就是最小生成树问题, 先介绍一下最小生成树(Minimum Cost Spanning Tree),简称MST。
- 给定一个带权的无向连通图,如何选取一棵生成树,使树上所有边上权的总和为最小,这叫最小生成树
- N个顶点,一定有N-1条边
- 包含全部顶点
- N-1条边都在图中
举例说明(如图:)
求最小生成树的算法主要是普里姆算法和克鲁斯卡尔算法
3、普里姆算法介绍
-
普利姆(Prim)算法求最小生成树,也就是在包含n个顶点的连通图中,找出只有(n-1)条边包含所有n个顶点的连通子图,也就是所谓的极小连通子图
-
普利姆的算法如下:
-
设G=(V,E)是连通网,T=(U,D)是最小生成树,V,U是顶点集合,E,D是边的集合
-
若从顶点u开始构造最小生成树,则从集合V中取出顶点u放入集合U中,标记顶点v的visited[u]=1
-
若集合U中顶点ui与集合V-U中的顶点vj之间存在边,则寻找这些边中权值最小的边,但不能构成回路,将顶点vj加入集合U中,将边(ui,vj)加入集合D中,标记visited[vj]=1
-
重复步骤②,直到U与V相等,即所有顶点都被标记为访问过,此时D中有n-1条边
提示: 单独看步骤很难理解,我们通过代码来讲解,比较好理解.
4、普里姆算法图片解析
5、普里姆算法代码实现
package com.qf.prim;
public class PrimAlgorithm {
public static void main(String[] args) {
char[] data={'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int [][]weight=new int[][]{
{10000,5,7,10000,10000,10000,2},
{5,10000,10000,9,10000,10000,3},
{7,10000,10000,10000,8,10000,10000},
{10000,9,10000,10000,10000,4,10000},
{10000,10000,8,10000,10000,5,4},
{10000,10000,10000,4,5,10000,6},
{2,3,10000,10000,4,6,10000}};
Mgraph mgraph=new Mgraph(data.length);
MiniTree miniTree=new MiniTree();
miniTree.createMiniTree(mgraph,data,weight);
miniTree.showMiniTree(mgraph);
miniTree.prim(mgraph,2);
}
}
class MiniTree{
public MiniTree(){};
/**
* 创建最小树
* @param mgraph
* @param data
* @param weight
*/
public void createMiniTree(Mgraph mgraph,char[] data,int [][] weight){
for (int i = 0; i < mgraph.vert; i++) {
mgraph.data[i]=data[i];
for (int j = 0; j < mgraph.vert; j++){
mgraph.weight[i][j]=weight[i][j];
}
}
}
/**
* 展示最小树
* @param mgraph
*/
public void showMiniTree(Mgraph mgraph){
for (int[] ints : mgraph.weight) {
for (int anInt : ints) {
System.out.print(anInt+" ");
}
System.out.println();
}
}
public void prim(Mgraph mgraph,int v){
//从第几个字符开始访问
//已访问表
int visit[]=new int[mgraph.vert];
visit[v]=1;
int weight=10000;
int h1=-1;
int h2=-1;
for (int k=1;k<mgraph.vert;k++){
for (int i = 0; i < mgraph.vert; i++) {
for (int j = 0; j < mgraph.vert; j++) {
if (visit[i]==1&visit[j]==0&weight>mgraph.weight[i][j]){
h1=i;
h2=j;
weight=mgraph.weight[i][j];
}
}
}
System.out.println("边<"+mgraph.data[h1]+" "+mgraph.data[h2]+">"+"权重为:"+mgraph.weight[h1][h2]);
weight=10000;
visit[h2]=1;
}
}
}
class Mgraph{
int vert; //顶点个数
char[] data; //字符数据
int [][] weight; //邻接矩阵来表示权重
public Mgraph(int vert){
this.vert=vert;
this.data=new char[vert];
this.weight=new int[vert][vert];
}
}