240
笔下虽有千言,胸中实无一策

学习笔记 | Artificial Intelligence for Robotics

Artificial Intelligence for Robotics

Overview

  • Lesson 1 - Localization Overview (9/22/2017 - 10/1/2017)
  • Lesson 2 - Kalman Filters (10/3/2017 - )
  • Lesson 3 - Particle Filters
  • Lesson 4 - Search
  • Lesson 5 - PID Control
  • Lesson 6 - SLAM
  • Exam
  • Project

Note

1. Localization Overview

  • Postierior
  • Convolution
  • Measurement update
  • Localization
    • Belief = Probility by Normalization
    • Sense = Product of the following 
    • Move = Convolution (Addition)
  • Bayes's Rule
  • The Theroem of Total Probability
  • Monte Carlo Localization
  • histogram filters

2. Kalman Filters

  • Kalman Filters vs Monte Carlo Localization
    • Kalman Filters Monte Carlo Localization
      continuous discrete
      uni-modal multi-modal
      Gaussian Histogram

3. Particle Filters

4. Search

5. PID Control

6. SLAM

Practice Exam

Project

Reference

  1. Udacity Course: Artificial Intelligence for Robotics
  2. Coursera: Robotics - Estimation and Learning
  3. Probabilistic Robotics
posted @ 2017-09-23 03:38  CasperWin  阅读(413)  评论(0编辑  收藏  举报