240
笔下虽有千言,胸中实无一策

30 Day Challenge Day 22 | Leetcode 85. Maximal Rectangle

题解

Hard

方法一:动态规划

取每个位置的最大高度 Maximum Height at Each Point

这道题与84题联系在一起看,完全可以转化成84题的样子。对于每一行,只看其以上的数组元素,把连续的值为1的格子累加起来,就变成 histogram 了。

那么,在每一个值为1的坐标位置上,找到对应的左边界、右边界和上边界(即高度)。遍历一遍,就得到当前数组的最大矩形了。

class Solution {
public:
    int maximalRectangle(vector<vector<char>>& matrix) {
        if(matrix.empty()) return 0;
        
        int m = matrix.size();
        int n = matrix[0].size();
        
        vector<int> height(n, 0), left(n, 0), right(n, n-1);
        
        int maxArea = 0;

        for(int i = 0; i < m; i++) {
            int cur_left = 0, cur_right = n-1;

            // (1) update height[i] namely histogram
            for(int j = 0; j < n; j++) {
                if(matrix[i][j] == '1') {
                    height[j]++;
                } else {
                    height[j] = 0;
                }
            }
            
            // (2) update left[i]
            for(int j = 0; j < n; j++) {
                if(matrix[i][j] == '1') {
                    left[j] = max(left[j], cur_left);
                } else {
                    left[j] = 0; // go back to left most
                    cur_left = j+1;
                }                
            }            
            
            // (3) update right[i]
             for(int j = n-1; j >= 0; j--) {
                if(matrix[i][j] == '1') {
                    right[j] = min(right[j], cur_right);
                } else {
                    right[j] = n-1; // go back to right most
                    cur_right = j-1;
                }                 
            }

            // update maxArea
            for(int j = 0; j < n; j++) {
                maxArea = max(maxArea, (right[j]-left[j]+1)*height[j] );
            }
        }
        
        return maxArea;
    }
};

方法二:动态规划

借用84题Better Brute Force的方法,在这里是可以通过的。


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
class Solution {
public:
  int maximalRectangle(vector<vector<char> > &matrix) {
    int r = matrix.size();
    if (r == 0) return 0;
    int c = matrix[0].size();
  
    // dp[i][j] := max len of all 1s ends with col j at row i.
    vector<vector<int>> dp(r, vector<int>(c));
 
    for (int i = 0; i < r; ++i)
      for (int j = 0; j < c; ++j)
        dp[i][j] = (matrix[i][j] == '1') ? (j == 0 ? 1 : dp[i][j - 1] + 1) : 0;
 
    int ans = 0;
 
    for (int i = 0; i < r; ++i)
      for (int j = 0; j < c; ++j) {
        int len = INT_MAX;
        for (int k = i; k < r; k++) {
          len = min(len, dp[k][j]);
          if (len == 0) break;
          ans = max(len * (k - i + 1), ans);
        }
    }
 
    return ans;
  }
};
posted @ 2020-10-10 05:21  CasperWin  阅读(111)  评论(0编辑  收藏  举报