Hoeffding inequality

Hoeffding公式为

如果把Training error和Test error分别看成的话,Hoeffding告诉我们,取样出来的v和总的u大部分是比较接近的,很小的概率是差很远的,即Ein和Eout差很远,这种情况称为Bad sample. 本来只有一个coin,丢5次,5次head的概率就是1/32。现在有150个coin,可以选择出现5次的那个coin,这时概率会大大增加,变成了1-(31/32)^150 = 99%。 现在的问题是,Algorithm要从H set中选择一个h,而不是force to pick this h。要做到给不同的data,通过A可以得到不同的h,即不同的分界线。但是现在如果只有一个h,则不是learning的过程。但是可以去verify这个h好不好,就看这个h的Ein(h)小不小了。 如果现在有multiple h,对应前面多个coin,其中有一个h在sample上全对,即这个coin5次都是head,说明这个h就很好吗?NO!!其实对于150个硬币,都是一样的,不存在好与坏。出现5次head也只是概率问题。假设我们选择了这块出现5次head的硬币,如果继续往下投,搞不好就不会出现这么多次head了。对应到h上,如果选择一个在sample上表现很好的h,即Ein(h)很小,但是把这个h放到out-of-sample里去,可能表现就会很差了(overfitting)。 我们可能有很多组的training set,这些training set在一个特定的h上表现不一,有的很好,有的则一般,但是这个h在out-of-sample上的表现,有可能和它在in-sample上的表现接近,也可能差很远。如果Ein和Eout差很多的话,可能是Ein很小,但是Eout很大,则这组产生这样的Ein的training set是一个Bad sample. Hoeffding保证的是这种情况的概率很小。

现在假设Hset里有M个h。各种数据集在h上的表现如下

NewImage

D1在h1上产生很小的Ein,但是h1的Eout很大,则D1对于h1来所就是Bad data. 然而D1126就不是一个Bad data,对于Hset里面的任意一个h,Ein(h)都接近Eout(h)。 对于一个Bad data,它使得Ein far away from Eout的概率是: NewImage

但是我们还是可以在不知道Eout(h),同时也不知道f以及D的分布P的情况下,找到概率的upper bound,这个概率比较小,即Ein(g)=Eout(g) is PAC。(g就是由Algorithm选择产生Ein最小的那个h)。 结论

NewImage

posted on 2015-07-16 22:15  CaseyZ  阅读(648)  评论(0编辑  收藏  举报

导航