一致性 hash 算法理解与实现
前言
近段时间在了解分布式时,经常绕不开一个算法: 一致性哈希算法。于是在了解并实践这个算法后,就有了此文章。
算法间的对比
在分布式分片中,存在着几种算法: 取模,分段,一致性 hash。
取模 | 分段 | 一致性哈希 | |
---|---|---|---|
上层是否感知 | 是 | 是 | 否 |
迁移成本 | 高 | 高 | 低,只涉及相邻节点 |
单点故障影响 | 高 | 高 | 低,只影响相邻节点 |
算法复杂度 | 低 | 低 | 高 |
热点数据 | 存在 | 存在 | 存在 |
一致性哈希主要解决问题
从上述对比可知,一致性哈希主要降低节点上下线中带来的数据迁移成本,同时节点数量的变化与分片原则于上层无感,使上层更专注于领域内逻辑的编写,使整体架构更加灵活。
一致性 hash 原理
- 基本数据结构
基本数据类型因人而已,常规的哈希取模采用大多采用将数据 hash 到 2^32 - 1的空间中,一致性哈希通常在此基础上将空间变成一个环。如下图所示。
本次实现采用的是 key 按大小排列的哈希表。原打算使用数组承接数据,但排序成本随 key 的增多而加大,遂放弃。
-
数据存储
数据存储与哈希取模算法大致相同,都是通过计算存入数据的哈希值放入对应的哈希槽上。但一致性哈希差异之处在于当计算 hash 不在环上,数据存入首个 hash 槽中。
场景假设: 现已上线 4 节点(server1 ~ 4),对应 hash 值为 hash1 ~ 4。现有5个数据(hash1 ~ 5)于存入节点中,结果如下图所示。
本次实现采用的思路是
1. 计算存入数据的 hash 值
2. 寻找最近的(比数据 hash 值大的最小的节点 hash)节点并写入
3. 若 2 中未能寻找服务器,则写入第一个(hash 最小)节点中
- 节点上线
新节点加入一致性哈希环中,原理是通过计算节点所代表的 hash 值,并根据计算值将节点映射在环上,最后迁移相邻节点数据到新节点上。
场景假设: 现已上线 4 台服务器(server1 ~ 4),对应 hash 值为 hash1 ~ 4。现有一个新节点(hash5)节点上线到环上。结果如下图所示。
本次实现采用的思路是
1. 计算上线节点 hash 值
2. 计算上线节点所新增的虚拟节点的 hash 值(若初始化指定虚拟节点数量)
3. 寻找最近的(比上线节点与虚拟节点 hash 值大的最小的节点 hash)节点,取出节点数据
4. 将1 2点节点加入到 hash 环中
5. 将 3 中取出的数据重新放入到 hash 环上
- 节点下线
已有节点下线,原理是通过计算节点所代表的 hash 值,取出节点所含数据,下线节点,将取出数据重新放入 hash 环上。
场景假设: 现已上线 5 台服务器(server1 ~ 5),对应 hash 值为 hash1 ~ 5。现节点 server4 下线。结果如下图所示。
本次实现采用的思路是
1. 计算下线节点 hash 值
2. 取出下线节点以及虚拟节点(若初始化指定虚拟节点数量)存储数据
3. 将下线节点以及虚拟节点(若初始化指定虚拟节点数量)从 hash 环上移除
4. 将 2 中数据重新放入到环上
代码实现
一致性哈希分为两个方案: 不带虚拟节点与带虚拟节点。而两个方案实现类似,所以本次实现将两种方案合在一起实现。实现如下。
package org.CommonAlgorithms.ConsistentHash;
import org.CommonAlgorithms.HashAlgorithm.HashService;
import java.util.List;
/**
* consistentHashing interface
* @author cartoon
* @since 10/01/2021
* @version 1.1
*/
public interface ConsistentHashing {
/**
* put data to hash loop
* @param data data list
* @return put result
*/
boolean putData(List<String> data);
/**
* put data to hash loop
* @param data data
* @return put result
*/
boolean putData(String data);
/**
* remove node from hash loop
* @param node removing node
* @return remove result
*/
boolean removeNode(String node);
/**
* add node to hash loop
* @param node adding node
* @return add result
*/
boolean addNode(String node);
/**
* inject hash method to hash loop
* @param hashService hash method
* @throws UnsupportedOperationException if loop already has node
*/
void setHashMethod(HashService hashService);
/**
* print all data in loop according ascending hash value with nodes
*/
void printAllData();
}
package org.CommonAlgorithms.ConsistentHash;
import org.CommonAlgorithms.HashAlgorithm.HashService;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.util.*;
/**
* consistent hash achieve
* @author cartoon
* @since 2021/01/17
*/
public class ConsistentHashingImpl implements ConsistentHashing {
private static final Logger log = LoggerFactory.getLogger(ConsistentHashingImpl.class);
/**
* virtual node name template
*/
private static final String virtualNodeFormat = "%s&&%d";
/**
* real node and its virtual node mapping
*/
private SortedMap<String, List<String>> realNodeToVirtualNode;
/**
* hash and its node mapping
*/
private SortedMap<Integer, String> hashToNodes;
/**
* node and its data mapping
*/
private Map<String, List<String>> nodeToData;
/**
* determine virtual node's number of each node
*/
private int virtualNodeNum;
/**
* inject hash method, if null, use loop default hash method
*/
private HashService hashService;
public ConsistentHashingImpl() {
this(0, new String[0]);
}
public ConsistentHashingImpl(String... nodes) {
this(0, nodes);
}
public ConsistentHashingImpl(int virtualNodeNum) {
this(virtualNodeNum, new String[0]);
}
public ConsistentHashingImpl(int virtualNodeNum, String... nodes) {
//1. intercept virtual num smaller than 0
if(virtualNodeNum < 0){
log.error("virtual num is not allow smaller than 0");
throw new IllegalArgumentException();
}
//2. initialize loop member attributes
this.virtualNodeNum = virtualNodeNum;
realNodeToVirtualNode = new TreeMap<>();
hashToNodes = new TreeMap<>();
nodeToData = new HashMap<>();
for(String server : nodes){
hashToNodes.put(getHash(server), server);
nodeToData.put(server, new LinkedList<>());
}
//3. if virtual node number bigger than 0, add virtual node
if(virtualNodeNum > 0){
for(String server : nodes){
addVirtualNode(server);
}
}
}
@Override
public boolean putData(List<String> data) {
//1. circulate call put data method to add data to loop
for(String incomingData : data){
if(!putData(incomingData)){
return false;
}
}
return true;
}
@Override
public boolean putData(String data) {
if(hashToNodes.isEmpty()){
log.error("put data, usable server is empty");
return false;
}
//1. calculate data's hash value
int currentHash = getHash(data);
//2. get usual node(node's hash value is bigger than data's hash value), if usual node list is empty, get first node in loop
SortedMap<Integer, String> usableNodes = hashToNodes.tailMap(currentHash);
String node = usableNodes.isEmpty() ? hashToNodes.get(hashToNodes.firstKey()) : usableNodes.get(usableNodes.firstKey());
//3. add data to node
List<String> dataList = nodeToData.get(node);
dataList.add(data);
log.info("put data, data {} is placed to server {}, hash: {}", data, node, currentHash);
return true;
}
@Override
public boolean removeNode(String node) {
//1. calculate hash value of removing node
int removeServerHash = getHash(node);
if(!hashToNodes.containsKey(removeServerHash)){
log.error("remove server, current server is not in server list, please check server ip");
return false;
}
//2. get data from removing node
List<String> removeServerData = nodeToData.get(node);
//3. get removing node's virtual node data, remove all virtual node with removing node
if(virtualNodeNum != 0){
for(String virtualNode : realNodeToVirtualNode.get(node)){
removeServerData.addAll(nodeToData.get(virtualNode));
hashToNodes.remove(getHash(virtualNode));
nodeToData.remove(virtualNode);
}
}
//4. remove node from hash loop
hashToNodes.remove(removeServerHash);
nodeToData.remove(node);
if(hashToNodes.size() == 0){
log.info("remove server, after remove, server list is empty");
return true;
}
//5. put data to loop by call put data method
putData(removeServerData);
log.info("remove server, remove server {} success", node);
return true;
}
@Override
public boolean addNode(String node) {
//1, calculate adding node's hash value
int addServerHash = getHash(node);
//2. add node and migrate data
if(hashToNodes.isEmpty()){
//2.1 add node and its virtual node to loop directly when current loop is empty
hashToNodes.put(addServerHash, node);
nodeToData.put(node, new LinkedList<>());
if(virtualNodeNum > 0){
addVirtualNode(node);
}
} else{
//2.2.1 get data to be migrated from loop
SortedMap<Integer, String> greatServers = hashToNodes.tailMap(addServerHash);
String greatServer = greatServers.isEmpty() ? hashToNodes.get(hashToNodes.firstKey()) : greatServers.get(greatServers.firstKey());
List<String> firstGreatServerData = new LinkedList<>(nodeToData.get(greatServer));
//2.2.2 add node and its virtual node to loop
hashToNodes.put(addServerHash, node);
nodeToData.put(greatServer, new LinkedList<>());
nodeToData.put(node, new LinkedList<>());
if(virtualNodeNum != 0){
addVirtualNode(node);
}
//2.2.3 migrate 2.2.1 data to loop by call put data method
putData(firstGreatServerData);
}
log.info("add server, server {} has been added", node);
return true;
}
@Override
public void printAllData() {
nodeToData.forEach((server, data) -> log.info("server {} contains data {}", server, data));
}
@Override
public void setHashMethod(HashService hashService) {
if(!hashToNodes.isEmpty()){
throw new UnsupportedOperationException();
}
this.hashService = hashService;
}
private void addVirtualNode(String realNode){
if(virtualNodeNum > 0){
List<String> virtualNodeList = new LinkedList<>();
for(int cnt = 0; cnt < this.virtualNodeNum; cnt++){
//1. generate virtual node name by default format
String virtualNodeName = String.format(virtualNodeFormat, realNode, cnt);
//2. calculate each virtual node's hash value
int virtualNodeHash = getHash(virtualNodeName);
//3. current node already exist in loop, continue
if(hashToNodes.containsKey(virtualNodeHash)){
continue;
}
//4. add node to loop
virtualNodeList.add(virtualNodeName);
hashToNodes.put(virtualNodeHash, virtualNodeName);
nodeToData.put(virtualNodeName, new LinkedList<>());
}
//5. map virtual node to real node
realNodeToVirtualNode.put(realNode, virtualNodeList);
}
}
private int getHash(String data){
return hashService == null ? defaultGetHash(data) : hashService.getHash(data);
}
private int defaultGetHash(String data){
int res = 0;
for(char tempChar : data.toCharArray()){
if(tempChar >= '0' && tempChar <= '9'){
res += tempChar;
}
}
return res;
}
}
测试结果
不带虚拟节点的一致性哈希
测试代码
package ConsistentHash;
import org.CommonAlgorithms.ConsistentHash.ConsistentHashing;
import org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* @author cartoon
* @date 2020/12/27
*/
public class ConsistentHashingWithoutVirtualNodeTest {
private static final Logger log = LoggerFactory.getLogger(ConsistentHashingWithoutVirtualNodeTest.class);
private ConsistentHashing consistentHashing;
private String[] servers;
private String[] data;
@Before
public void before(){
servers = new String[]{"000", "111", "222", "333", "555"};
consistentHashing = new ConsistentHashingImpl(servers);
data = new String[]{"000", "111", "222", "333", "555"};
}
@Test
public void testConsistentHashing(){
for(String str : data){
Assert.assertTrue(consistentHashing.putData(str));
}
consistentHashing.removeNode("333");
consistentHashing.addNode("444");
consistentHashing.putData("444");
consistentHashing.printAllData();
}
}
测试结果
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 000 is placed to server 000, hash: 144
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 111 is placed to server 111, hash: 147
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 222 is placed to server 222, hash: 150
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 333 is placed to server 333, hash: 153
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 555 is placed to server 555, hash: 159
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 333 is placed to server 555, hash: 153
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - remove server, remove server 333 success
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 555 is placed to server 555, hash: 159
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 333 is placed to server 444, hash: 153
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - add server, server 444 has been added
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 444 is placed to server 444, hash: 156
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 000 contains data [000]
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 111 contains data [111]
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 222 contains data [222]
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 444 contains data [333, 444]
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 555 contains data [555]
含虚拟节点的一致性哈希测试
测试代码
package ConsistentHash;
import org.CommonAlgorithms.ConsistentHash.ConsistentHashing;
import org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl;
import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* @author cartoon
* @date 2021/01/17
*/
public class ConsistentHashingWithVirtualNodeTest {
private static final Logger log = LoggerFactory.getLogger(ConsistentHashingWithVirtualNodeTest.class);
private ConsistentHashing consistentHashing;
private String[] servers;
private String[] data;
@Before
public void before(){
servers = new String[]{"000", "111", "222", "333", "555"};
consistentHashing = new ConsistentHashingImpl(3, servers);
data = new String[]{"000", "111", "222", "333", "555"};
}
@Test
public void testConsistentHashing(){
for(String str : data){
Assert.assertTrue(consistentHashing.putData(str));
}
consistentHashing.removeNode("333");
consistentHashing.addNode("444");
consistentHashing.putData("444");
consistentHashing.putData("555&&0");
consistentHashing.printAllData();
}
}
测试结果
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 000 is placed to server 000, hash: 144
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 111 is placed to server 111, hash: 147
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 222 is placed to server 222, hash: 150
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 333 is placed to server 333, hash: 153
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 555 is placed to server 555, hash: 159
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 333 is placed to server 555, hash: 153
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - remove server, remove server 333 success
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 555 is placed to server 555, hash: 159
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 333 is placed to server 444, hash: 153
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - add server, server 444 has been added
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 444 is placed to server 444, hash: 156
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - put data, data 555&&0 is placed to server 555&&0, hash: 207
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 000&&2 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 000&&1 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 000&&0 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 111&&1 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 111&&2 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 555&&1 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 555&&2 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 222&&2 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 444&&0 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 444&&1 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 444&&2 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 555&&0 contains data [555&&0]
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 000 contains data [000]
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 111 contains data [111]
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 222 contains data [222]
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 222&&0 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 444 contains data [333, 444]
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 555 contains data [555]
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 222&&1 contains data []
[main] INFO org.CommonAlgorithms.ConsistentHash.ConsistentHashingImpl - server 111&&0 contains data []
实现存在的缺陷
1. 哈希算法过于简单,哈希冲突概率较大
2. 真实节点含有虚拟节点的数量不均
3. 节点上线时真实节点与已存在的虚拟节点的顺序冲突尚未解决
后记
本次实现的所有代码已全部上传到 github,项目主要包含一些常用的算法,如排序算法,限流算法的简单实现,欢迎提 issue。