pytorch基础问题

本文将自己在pytorch学习中遇见的各种问题整理起来,并且持续更新。

1:torch.Tensor和torch.tensor的区别

 开始使用torch.tensor和torch.Tensor的时候发现结果都是一样的。都能生成新的张量。但根源上是有差别的。

import  torch
n=torch.tensor([[3,4],[1,2]])
x=torch.Tensor([[3,4],[1,2]])
print(n,'|||',x)
print(n.shape,'|||',x.shape)
print(n.type(),'|||',x.type())
'''
tensor([[3, 4],
        [1, 2]]) ||| tensor([[3., 4.],
        [1., 2.]])
torch.Size([2, 2]) ||| torch.Size([2, 2])
torch.LongTensor ||| torch.FloatTensor
'''

torch.Tensor()是Python类,更明确的说,是默认张量类型torch.FloatTensor()的别名,调用Tensor类的构造函数__init__,生成单精度浮点类型的张量。

orch.tensor()仅仅是Python的函数,函数原型:

torch.tensor(data, dtype=None, device=None, requires_grad=False)

data可以是:list, tuple, array, scalar等类型。拷贝data中的数据部分,根据原始数据类型生成相应的torch.LongTensor,torch.FloatTensor,torch.DoubleTenso

 注:torch.tensor不能直接定义维度:torch.tensor(5,3)是错误的。

posted on 2019-08-18 16:31  小轩窗~  阅读(165)  评论(0编辑  收藏  举报