4.caffe资源汇总(更新中)
学习需要更新,网上有一些非常不错博客.
感谢这些博主,他们都很认真。
00、tornadomeet
1、xizero00
5、yhl_leo
6、在路上
10、samylee
11、神经网络入门
12、Caffe快速入门
13、CNN的反向传播
14、caffe源码学习笔记
16、CNN入门
18、caffe+CNN
22、CS231 CNN 课程
23、Visualizing and understandingConvolutionalNetworks视频
24、返卷积的概念
https://github.com/vdumoulin/conv_arithmetic
http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf
https://classroom.udacity.com/courses/ud730/lessons/6370362152/concepts/63798118170923
28、caffe训练CNN流程
29、CNN中的一些trick
30、通过BN来理解bp传播
http://blog.csdn.net/hjimce/article/details/50866313
31、CNN batch normalization Caffe和mxNet
32、building-blocks-of-deep-learning
33、CS231实现自己的卷积和BN
http://cthorey.github.io./backprop_conv/
http://cthorey.github.io./backpropagation/
34、caffe源码系列
http://blog.csdn.net/xizero00/article/category/5619855/1
http://blog.csdn.net/langb2014/article/details/51543388
35、CVPR 2015的讨论
36、Memect
38、thy_2014
39、牛闯
40、liyaohhh
神经网络入门:
http://neuralnetworksanddeeplearning.com/chap1.html
Caffe快速入门
http://shengshuyang.github.io/A-step-by-step-guide-to-Caffe.html
CNN的反向传播
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
caffe源码学习笔记
http://46aae4d1e2371e4aa769798941cef698.devproxy.yunshipei.com/seven_first/article/category/5721883/
CNN入门基础:感知域说的很清楚
CNN入门
http://xrds.acm.org/blog/2016/06/convolutional-neural-networks-cnns-illustrated-explanation/
caffe使用基础(星空下的巫师)c++版本
https://github.com/shicai/Caffe_Manual
caffe+CNN
http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/
visual conNet CNN的可视化
https://github.com/jcjohnson/cnn-vis/
CNN softmax公式推导
http://zjjconan.github.io/articles/2015/04/Softmax-Regression-Matlab/
CNN人脸检测 (matConvet)
https://github.com/willard-yuan/CNN-for-Face-Image-Retrieval
CS231 CNN 课程
http://cs231n.github.io/neural-networks-3/
Visualizing and understandingConvolutionalNetworks视频
http://videolectures.net/eccv2014_zeiler_convolutional_networks/
返卷积的概念:
http://datascience.stackexchange.com/questions/6107/what-are-deconvolutional-layers
https://github.com/vdumoulin/conv_arithmetic
http://www.matthewzeiler.com/pubs/cvpr2010/cvpr2010.pdf
CNN的反向传播,讲的很好
http://www.cnblogs.com/tornadomeet/p/3468450.html
google深度学习笔记视频
http://www.jianshu.com/p/c2a870c19623
https://classroom.udacity.com/courses/ud730/lessons/6370362152/concepts/63798118170923
caffe源码全连接层分析
http://zhangliliang.com/2014/09/15/about-caffe-code-full-connected-layer/
caffe训练CNN流程
https://frankzliu.com/experimenting-with-different-penultimate-layers-in-caffe/
CNN中的一些trick
http://lamda.nju.edu.cn/weixs/project/CNNTricks/CNNTricks.html
通过BN来理解bp 传播
http://blog.csdn.net/hjimce/article/details/50866313
CNN batch normalization Caffe和mxNet
http://shuokay.com/2016/05/28/batch-norm/
http://www.it610.com/article/5204719.htm
building-blocks-of-deep-learning
http://deepdish.io/2015/11/21/building-blocks-of-deep-learning/
CS231实现自己的卷积和BN
http://cthorey.github.io./backprop_conv/
http://cthorey.github.io./backpropagation/
caffe源码系列
http://blog.csdn.net/xizero00/article/category/5619855/1
http://blog.csdn.net/langb2014/article/details/51543388
CVPR 2015的讨论
http://www.computervisionblog.com/2015/06/deep-down-rabbit-hole-cvpr-2015-and.html