Matplotlib 基本图表的绘制

图表类别:线形图、柱状图、密度图,以横纵坐标两个维度为主

同时可延展出多种其他图表样式

plt.plot(kind='line', ax=None, figsize=None, use_index=True, title=None, grid=None, legend=False, style=None, logx=False, logy=False, loglog=False, xticks=None, yticks=None, xlim=None, ylim=None, rot=None, fontsize=None, colormap=None, table=False, yerr=None, xerr=None, label=None, secondary_y=False, **kwds)

1.Series直接生成图表

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
% matplotlib inline
# 导入相关模块

import warnings
warnings.filterwarnings('ignore') 
# 不发出警告

ts = pd.Series(np.random.randn(1000), index=pd.date_range('1/1/2000', periods=1000))
ts = ts.cumsum()
ts.plot(kind='line',
       label = 'hehe',
       style = '--g.',
       color = 'red',
       alpha = 0.4,
       use_index = True,
       rot = 45,
       grid = True,
       ylim = [-50,50],
       yticks = list(range(-50,50,10)),
       figsize = (8,4),
       title = 'test',
       legend = True)
#plt.grid(True, linestyle = "--",color = "gray", linewidth = "0.5",axis = 'x')  # 网格
plt.legend()
# Series.plot():series的index为横坐标,value为纵坐标
# kind → line,bar,barh...(折线图,柱状图,柱状图-横...)
# label → 图例标签,Dataframe格式以列名为label
# style → 风格字符串,这里包括了linestyle(-),marker(.),color(g)
# color → 颜色,有color指定时候,以color颜色为准
# alpha → 透明度,0-1
# use_index → 将索引用为刻度标签,默认为True
# rot → 旋转刻度标签,0-360
# grid → 显示网格,一般直接用plt.grid
# xlim,ylim → x,y轴界限
# xticks,yticks → x,y轴刻度值
# figsize → 图像大小
# title → 图名
# legend → 是否显示图例,一般直接用plt.legend()
# 也可以 → plt.plot()

输出:

2.Dataframe直接生成图表

# Dataframe直接生成图表

df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index, columns=list('ABCD'))
df = df.cumsum()
df.plot(kind='line',
       style = '--.',
       alpha = 0.4,
       use_index = True,
       rot = 45,
       grid = True,
       figsize = (8,4),
       title = 'test',
       legend = True,
       subplots = False,
       colormap = 'Greens')
# subplots → 是否将各个列绘制到不同图表,默认False
# 也可以 → plt.plot(df)

输出:

3.柱状图与堆叠图

# 柱状图与堆叠图

fig,axes = plt.subplots(4,1,figsize = (10,10))
s = pd.Series(np.random.randint(0,10,16),index = list('abcdefghijklmnop'))  
df = pd.DataFrame(np.random.rand(10,3), columns=['a','b','c'])

s.plot(kind='bar',color = 'k',grid = True,alpha = 0.5,ax = axes[0])  # ax参数 → 选择第几个子图
# 单系列柱状图方法一:plt.plot(kind='bar/barh')   # dataframe里面如果有标签的话,默认以标签作为横坐标

df.plot(kind='bar',ax = axes[1],grid = True,colormap='Reds_r')
# 多系列柱状图

df.plot(kind='bar',ax = axes[2],grid = True,colormap='Blues_r',stacked=True) 
# 多系列堆叠图
# stacked → 堆叠

df.plot.barh(ax = axes[3],grid = True,stacked=True,colormap = 'BuGn_r')  #横向的堆叠图 也可以这样写:df.plot(kind = 'barth')
# 新版本plt.plot.<kind>

输出:

5.柱状图的另一种画法

# 柱状图 plt.bar()

plt.figure(figsize=(10,4))
x = np.arange(10)
y1 = np.random.rand(10)
y2 = -np.random.rand(10)

plt.bar(x,y1,width = 1,facecolor = 'yellowgreen',edgecolor = 'white',yerr = y1*0.1)
plt.bar(x,y2,width = 1,facecolor = 'lightskyblue',edgecolor = 'white',yerr = y2*0.1)
# x,y参数:x,y值
# width:宽度比例
# facecolor柱状图里填充的颜色、edgecolor是边框的颜色
# left-每个柱x轴左边界,bottom-每个柱y轴下边界 → bottom扩展即可化为甘特图 Gantt Chart
# align:决定整个bar图分布,默认left表示默认从左边界开始绘制,center会将图绘制在中间位置
# xerr/yerr :x/y方向error bar

for i,j in zip(x,y1):
    plt.text(i+0.3,j-0.15,'%.2f' % j, color = 'white')
for i,j in zip(x,y2):
    plt.text(i+0.3,j+0.05,'%.2f' % -j, color = 'white')
# 给图添加text
# zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。

输出:

 

 6.面积图

# 面积图

fig,axes = plt.subplots(2,1,figsize = (8,6))
df1 = pd.DataFrame(np.random.rand(10, 4), columns=['a', 'b', 'c', 'd'])
df2 = pd.DataFrame(np.random.randn(10, 4), columns=['a', 'b', 'c', 'd'])

df1.plot.area(colormap = 'Greens_r',alpha = 0.5,ax = axes[0])
df2.plot.area(stacked=False,colormap = 'Set2',alpha = 0.5,ax = axes[1])
# 使用Series.plot.area()和DataFrame.plot.area()创建面积图
# stacked:是否堆叠,默认情况下,区域图被堆叠
# 为了产生堆积面积图,每列必须是正值或全部负值!
# 当数据有NaN时候,自动填充0,所以图标签需要清洗掉缺失值

输出:

7.填图

# 填图   默认和坐标轴之间做一个填充

fig,axes = plt.subplots(2,1,figsize = (8,6))

x = np.linspace(0, 1, 500)
y1 = np.sin(4 * np.pi * x) * np.exp(-5 * x)
y2 = -np.sin(4 * np.pi * x) * np.exp(-5 * x)
axes[0].fill(x, y1, 'r',alpha=0.5,label='y1')
axes[0].fill(x, y2, 'g',alpha=0.5,label='y2')
# 对函数与坐标轴之间的区域进行填充,使用fill函数
# 也可写成:plt.fill(x, y1, 'r',x, y2, 'g',alpha=0.5)

x = np.linspace(0, 5 * np.pi, 1000) 
y1 = np.sin(x)  
y2 = np.sin(2 * x)  
axes[1].fill_between(x, y1, y2, color ='b',alpha=0.5,label='area')  
# 填充两个函数之间的区域,使用fill_between函数

for i in range(2):
    axes[i].legend()
    axes[i].grid()
# 添加图例、格网

输出:

8.饼图

# 饼图 plt.pie()
# plt.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, 
# radius=None, counterclock=True, wedgeprops=None, textprops=None, center=(0, 0), frame=False, hold=None, data=None)

s = pd.Series(3 * np.random.rand(4), index=['a', 'b', 'c', 'd'], name='series')
plt.axis('equal')  # 保证长宽相等
plt.pie(s,
       explode = [0.1,0,0,0],  #a和其他部分距离偏离0.1
       labels = s.index,
       colors=['r', 'g', 'b', 'c'],
       autopct='%.2f%%',#以二位小数点的百分号的形式显示
       pctdistance=0.6,
       labeldistance = 1.2,
       shadow = True,
       startangle=0,
       radius=1.5,
       frame=False)
print(s)
# 第一个参数:数据
# explode:指定每部分的偏移量 
# labels:标签
# colors:颜色
# autopct:饼图上的数据标签显示方式
# pctdistance:每个饼切片的中心和通过autopct生成的文本开始之间的比例
# labeldistance:被画饼标记的直径,默认值:1.1
# shadow:阴影
# startangle:开始角度
# radius:半径
# frame:图框
# counterclock:指定指针方向,顺时针或者逆时针

输出:

a    0.744065
b    2.069706
c    2.159888
d    0.642984
Name: series, dtype: float64

9.直方图+密度图

# 直方图+密度图

s = pd.Series(np.random.randn(1000))
s.hist(bins = 20,
       histtype = 'bar',
       align = 'mid',
       orientation = 'vertical',
       alpha=0.5,
       normed =True)
# bin:箱子的宽度
# normed 标准化
# histtype 风格,bar,barstacked,step,stepfilled
# orientation 水平还是垂直{‘horizontal’, ‘vertical’}
# align : {‘left’, ‘mid’, ‘right’}, optional(对齐方式)

s.plot(kind='kde',style='k--')
# 密度图    #如果把直方图和密度图放在一起的话,直方图必须标准化,否则不显示密度图 标准化就是把每个值放到0和1之间 
            #不标准化的化会显示实际值

输出:

10.堆叠直方图

# 堆叠直方图

plt.figure(num=1)
df = pd.DataFrame({'a': np.random.randn(1000) + 1, 'b': np.random.randn(1000),
                    'c': np.random.randn(1000) - 1, 'd': np.random.randn(1000)-2},
                   columns=['a', 'b', 'c','d'])
df.plot.hist(stacked=True,
             bins=20,
             colormap='Greens_r',
             alpha=0.5,
             grid=True)
# 使用DataFrame.plot.hist()和Series.plot.hist()方法绘制
# stacked:是否堆叠

df.hist(bins=50)
# 生成多个直方图

输出:

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000001F92A9B9940>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001F92AA016A0>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x000001F92AA4B8D0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000001F92AA8A400>]], dtype=object)

11.散点图

# plt.scatter()散点图 散点图会用到很多 因为图片就是散点图
# plt.scatter(x, y, s=20, c=None, marker='o', cmap=None, norm=None, vmin=None, vmax=None, 
# alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None, **kwargs)

plt.figure(figsize=(8,6))
x = np.random.randn(1000)
y = np.random.randn(1000)
plt.scatter(x,y,marker='.',
           s = np.random.randn(1000)*100,
           cmap = 'Reds',
           c = y,
           alpha = 0.8,)
plt.grid()
# s:散点的大小
# c:散点的颜色
# vmin,vmax:亮度设置,标量
# cmap:colormap

输出:

12.散点矩阵

# pd.scatter_matrix()散点矩阵
# pd.scatter_matrix(frame, alpha=0.5, figsize=None, ax=None, 
# grid=False, diagonal='hist', marker='.', density_kwds=None, hist_kwds=None, range_padding=0.05, **kwds)

df = pd.DataFrame(np.random.randn(100,4),columns = ['a','b','c','d'])
pd.scatter_matrix(df,figsize=(10,6),
                 marker = 'o',
                 diagonal='kde',
                 alpha = 0.5,
                 range_padding=0.1)
# diagonal:({‘hist’, ‘kde’}),必须且只能在{‘hist’, ‘kde’}中选择1个 → 每个指标的频率图
# range_padding:(float, 可选),图像在x轴、y轴原点附近的留白(padding),该值越大,留白距离越大,图像远离坐标原点

输出:

array([[<matplotlib.axes._subplots.AxesSubplot object at 0x000002A61B496E10>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000002A61C9FD550>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CA45F28>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CA80BE0>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CACAE10>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CB06BA8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CB4ECF8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CB5EFD0>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CD5E4E0>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CDA9438>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CDE7240>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CE32C18>],
       [<matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CE6E2E8>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CEBBA58>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CEF9128>,
        <matplotlib.axes._subplots.AxesSubplot object at 0x000002A61CF42278>]],
      dtype=object)

13.箱型图

# 箱型图
# plt.plot.box()绘制

fig,axes = plt.subplots(2,1,figsize=(10,6))
df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
color = dict(boxes='DarkGreen', whiskers='DarkOrange', medians='DarkBlue', caps='Gray')
# 箱型图着色
# boxes → 箱线
# whiskers → 分位数与error bar横线之间竖线的颜色
# medians → 中位数线颜色
# caps → error bar横线颜色

df.plot.box(ylim=[0,1.2],
           grid = True,
           color = color,
           ax = axes[0])
# color:样式填充

df.plot.box(vert=False, 
            positions=[1, 4, 5, 6, 8],
            ax = axes[1],
            grid = True,
           color = color)
# vert:是否垂直,默认True
# position:箱型图占位

输出:

14.箱型图另一种画法

# 箱型图
# plt.boxplot()绘制
# pltboxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, 
# usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, 
# labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_xticks=True, autorange=False, 
# zorder=None, hold=None, data=None)

df = pd.DataFrame(np.random.rand(10, 5), columns=['A', 'B', 'C', 'D', 'E'])
plt.figure(figsize=(10,4))
# 创建图表、数据

f = df.boxplot(sym = 'o',  # 异常点形状,参考marker
               vert = True,  # 是否垂直
               whis = 1.5,  # IQR,默认1.5,也可以设置区间比如[5,95],代表强制上下边缘为数据95%和5%位置
               patch_artist = True,  # 上下四分位框内是否填充,True为填充
               meanline = False,showmeans=True,  # 是否有均值线及其形状
               showbox = True,  # 是否显示箱线
               showcaps = True,  # 是否显示边缘线
               showfliers = True,  # 是否显示异常值
               notch = False,  # 中间箱体是否缺口
               return_type='dict'  # 返回类型为字典
              ) 
plt.title('boxplot')
print(f)

for box in f['boxes']:
    box.set( color='b', linewidth=1)        # 箱体边框颜色
    box.set( facecolor = 'b' ,alpha=0.5)    # 箱体内部填充颜色
for whisker in f['whiskers']:
    whisker.set(color='k', linewidth=0.5,linestyle='-')
for cap in f['caps']:
    cap.set(color='gray', linewidth=2)
for median in f['medians']:
    median.set(color='DarkBlue', linewidth=2)
for flier in f['fliers']:
    flier.set(marker='o', color='y', alpha=0.5)
# boxes, 箱线
# medians, 中位值的横线,
# whiskers, 从box到error bar之间的竖线.
# fliers, 异常值
# caps, error bar横线
# means, 均值的横线,

输出:

{'boxes': [<matplotlib.patches.PathPatch object at 0x000002A61CBCBA20>, 
<matplotlib.patches.PathPatch object at 0x000002A61CBDCA90>, <matplotlib.patches.PathPatch object at 0x000002A61CBF1940>, <matplotlib.patches.PathPatch object at 0x000002A61CC098D0>,
<matplotlib.patches.PathPatch object at 0x000002A61CC1F860>], 'means': [<matplotlib.lines.Line2D object at 0x000002A61CBD44A8>, <matplotlib.lines.Line2D object at 0x000002A61CBEC390>,
<matplotlib.lines.Line2D object at 0x000002A61CC03320>, <matplotlib.lines.Line2D object at 0x000002A61CC192B0>, <matplotlib.lines.Line2D object at 0x000002A61CB92438>],
'medians': [<matplotlib.lines.Line2D object at 0x000002A61CBC3EF0>, <matplotlib.lines.Line2D object at 0x000002A61CBE6B38>, <matplotlib.lines.Line2D object at 0x000002A61CBFEAC8>,
<matplotlib.lines.Line2D object at 0x000002A61CC14A58>, <matplotlib.lines.Line2D object at 0x000002A61CB96470>], 'caps': [<matplotlib.lines.Line2D object at 0x000002A61CBCEBE0>,
<matplotlib.lines.Line2D object at 0x000002A61CBCECF8>, <matplotlib.lines.Line2D object at 0x000002A61CBE2AC8>, <matplotlib.lines.Line2D object at 0x000002A61CBE69B0>,
<matplotlib.lines.Line2D object at 0x000002A61CBF7A58>, <matplotlib.lines.Line2D object at 0x000002A61CBFE940>, <matplotlib.lines.Line2D object at 0x000002A61CC0DF98>,
<matplotlib.lines.Line2D object at 0x000002A61CC148D0>, <matplotlib.lines.Line2D object at 0x000002A61CB9DF28>, <matplotlib.lines.Line2D object at 0x000002A61CB9D208>],
'fliers': [<matplotlib.lines.Line2D object at 0x000002A61CBD4B70>, <matplotlib.lines.Line2D object at 0x000002A61CBECB00>, <matplotlib.lines.Line2D object at 0x000002A61CC03A90>,
<matplotlib.lines.Line2D object at 0x000002A61CC19A20>, <matplotlib.lines.Line2D object at 0x000002A61CC24EB8>], 'whiskers': [<matplotlib.lines.Line2D object at 0x000002A61CBCBE80>,
<matplotlib.lines.Line2D object at 0x000002A61CBCBFD0>, <matplotlib.lines.Line2D object at 0x000002A61CBDCFD0>, <matplotlib.lines.Line2D object at 0x000002A61CBE2940>,
<matplotlib.lines.Line2D object at 0x000002A61CBF1F98>, <matplotlib.lines.Line2D object at 0x000002A61CBF78D0>, <matplotlib.lines.Line2D object at 0x000002A61CC09F28>,
<matplotlib.lines.Line2D object at 0x000002A61CC0D860>, <matplotlib.lines.Line2D object at 0x000002A61CC1FEB8>, <matplotlib.lines.Line2D object at 0x000002A61CC247F0>]}

 

# 箱型图
# plt.boxplot()绘制
# 分组汇总

df = pd.DataFrame(np.random.rand(10,2), columns=['Col1', 'Col2'] )
df['X'] = pd.Series(['A','A','A','A','A','B','B','B','B','B'])
df['Y'] = pd.Series(['A','B','A','B','A','B','A','B','A','B'])
print(df)
df.boxplot(by = 'X')
df.boxplot(column=['Col1','Col2'], by=['X','Y'])
# columns:按照数据的列分子图
# by:按照列分组做箱型图

输出:

       Col1      Col2  X  Y
0  0.661114  0.164637  A  A
1  0.483369  0.361403  A  B
2  0.954009  0.786664  A  A
3  0.173198  0.500602  A  B
4  0.156583  0.047123  A  A
5  0.852358  0.672986  B  B
6  0.823713  0.625156  B  A
7  0.705710  0.632264  B  B
8  0.940125  0.091521  B  A
9  0.230993  0.753328  B  B

 

 


 


 

posted @ 2018-11-10 14:44  RamboBai  阅读(1368)  评论(0编辑  收藏  举报