Numpy 索引及切片

1.一维数组的索引及切片

ar = np.arange(20)
print(ar)
print(ar[4])
print(ar[3:6])
print(ar[:4:2])   #索引到4 按2的步长
print('-----')

输出结果:

[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19]
4
[3 4 5]
[0 2]
-----

2. 二维数组的索引及切片

ar = np.arange(16).reshape(4,4)
print(ar, '数组轴数为%i' %ar.ndim)   # 4*4的数组
print(ar[2],  '数组轴数为%i' %ar[2].ndim)  # 切片为下一维度的一个元素,所以是一维数组
print(ar[2][1]) # 二次索引,得到一维数组中的一个值
print(ar[1:3],  '数组轴数为%i' %ar[1:3].ndim)  # 切片为两个一维数组组成的二维数组
print(ar[2,2])  # 切片数组中的第三行第三列 → 10
print(ar[:2,1:])  # 切片数组中的1,2行、2,3,4列 → 二维数组
print('-----')

输出结果:

[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]
 [12 13 14 15]] 数组轴数为2
[ 8  9 10 11] 数组轴数为1
9
[[ 4  5  6  7]
 [ 8  9 10 11]] 数组轴数为2
10
[[1 2 3]
 [5 6 7]]
-----

3.三维数组的索引及切片

ar = np.arange(8).reshape(2,2,2)
print(ar, '数组轴数为%i' %ar.ndim)   # 2*2*2的数组
print('\n')
print(ar[0],  '数组轴数为%i' %ar[0].ndim)  # 三维数组的下一个维度的第一个元素 → 一个二维数组
print(ar[0][0],  '数组轴数为%i' %ar[0][0].ndim)  # 三维数组的下一个维度的第一个元素下的第一个元素 → 一个一维数组
print(ar[0][0][1],  '数组轴数为%i' %ar[0][0][1].ndim)

输出结果:

[[[0 1]
  [2 3]]

 [[4 5]
  [6 7]]] 数组轴数为3


[[0 1]
 [2 3]] 数组轴数为2
[0 1] 数组轴数为1
1 数组轴数为0

4. 布尔型索引及切片

# 布尔型索引及切片

ar = np.arange(12).reshape(3,4)
i = np.array([True,False,True])
j = np.array([True,True,False,False])
print(ar)
print(i)
print(j)
print(ar[i,:])  # 在第一维度做判断,只保留True,这里第一维度就是行,ar[i,:] = ar[i](简单书写格式)
print(ar[:,j])  # 在第二维度做判断,这里如果ar[:,i]会有警告,因为i是3个元素,而ar在列上有4个
# 布尔型索引:以布尔型的矩阵去做筛选

m = ar > 5
print(m)  # 这里m是一个判断矩阵
print(ar[m])  # 用m判断矩阵去筛选ar数组中>5的元素 → 重点!后面的pandas判断方式原理就来自此处

输出结果:

[[ 0  1  2  3]
 [ 4  5  6  7]
 [ 8  9 10 11]]
[ True False  True]
[ True  True False False]
[[ 0  1  2  3]
 [ 8  9 10 11]]
[[0 1]
 [4 5]
 [8 9]]
[[False False False False]
 [False False  True  True]
 [ True  True  True  True]]
[ 6  7  8  9 10 11]

5.数组索引及切片的值更改、复制

ar = np.arange(10)
print(ar)
ar[5] = 100
ar[7:9] = 200
print(ar)
# 一个标量赋值给一个索引/切片时,会自动改变/传播原始数组

ar = np.arange(10)
b = ar.copy()
b[7:9] = 200
print(ar)
print(b)
# 复制

输出结果:

[0 1 2 3 4 5 6 7 8 9]
[  0   1   2   3   4 100   6 200 200   9]
[0 1 2 3 4 5 6 7 8 9]
[  0   1   2   3   4   5   6 200 200   9]

 

posted @ 2018-11-04 20:12  RamboBai  阅读(399)  评论(0编辑  收藏  举报