Numpy基础数据结构 python

Numpy基础数据结构

NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:

  • 实际的数据
  • 描述这些数据的元数据

1.一维数组

import numpy as np  
ar
= np.array([1,2,3,4,5,6,7]) print(ar) # 输出数组,注意数组的格式:中括号,元素之间没有逗号(和列表区分) print(ar.ndim) # 输出数组维度的个数(轴数),或者说“秩”,维度的数量也称rank print(ar.shape) # 数组的维度,对于n行m列的数组,shape为(n,m) print(ar.size) # 数组的元素总数,对于n行m列的数组,元素总数为n*m print(ar.dtype) # 数组中元素的类型,类似type()(注意了,type()是函数,.dtype是方法) print(ar.itemsize) # 数组中每个元素的字节大小,int32类型字节为4,float64的字节为8 print(ar.data) # 包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。 ar # 交互方式下输出,会有array(数组) # 数组的基本属性 # ① 数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推 # ② 在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量: # 比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组 # 所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。 # 而轴的数量——秩,就是数组的维数。

输出结果:

[1 2 3 4 5 6 7]
1
(7,)
7
int32
4
<memory at 0x0000027EA4F80F48>
array([1, 2, 3, 4, 5, 6, 7])

2.二维数组

import numpy as np
ar2 = np.array([[1,2,3],[2,3,4]])
print(ar2)
print(ar2.ndim)
print(ar2.shape)
print(ar2.dtype)
ar2

输出结果:

[[1 2 3]
 [2 3 4]]
2
(2, 3)
int32
array([[1, 2, 3],
       [2, 3, 4]])

3.有字符串的混合数组

import numpy as np
lst = [[1,2,3],['a','b','c']]
print(type(lst))
ar2 = np.array([['a','b','c'],[1,2,3]])
print(ar2)
print(ar2.dtype)    #有字符串组成的类型一定为字符串型号

输出结果:

<class 'list'>
[['a' 'b' 'c']
 ['1' '2' '3']]
<U1

4.三维数组

import numpy as np           #三维数组,由两个二维数组构成,而每个二维数组由2个一维数组构成
ar2 = np.array([[[1,2,3],[2,3,4]],
                [[4,5,6],[7,8,9]]
               ])
print(ar2)
print(ar2.shape)
print(ar2.ndim)

输出结果:

[[[1 2 3]
  [2 3 4]]

 [[4 5 6]
  [7 8 9]]]
(2, 2, 3)
3

5. 创建数组_1 array()

# 创建数组:array()函数,括号内可以是列表、元祖、数组、生成器等

ar1 = np.array(range(10))   # 整型
ar2 = np.array([1,2,3.14,4,5])   # 浮点型 由列表组成
ar3 = np.array([[1,2,3],('a','b','c')])   # 二维数组:嵌套序列(列表,元祖均可)
ar4 = np.array([[1,2,3],('a','b','c','d')])   # 注意嵌套序列数量不一会怎么样?
print(ar1,type(ar1),ar1.dtype)
print(ar2,type(ar2),ar2.dtype)
print(ar3,ar3.shape,ar3.ndim,ar3.size)     # 二维数组,共6个元素
print(ar4,ar4.shape,ar4.ndim,ar4.size)     # 一维数组,共2个元素

输出结果:

[0 1 2 3 4 5 6 7 8 9] <class 'numpy.ndarray'> int32
[1.   2.   3.14 4.   5.  ] <class 'numpy.ndarray'> float64
[['1' '2' '3']
 ['a' 'b' 'c']] (2, 3) 2 6
[list([1, 2, 3]) ('a', 'b', 'c', 'd')] (2,) 1 2

6.用数组构建数组

a1 = np.array([1,2,3])    #用数组构建数组
a2 = np.array([3,4,5])
a3 = np.array([a1,a2])
a3.shape

输出结果:

(2, 3)

7.创建数组_2 arange()

# 创建数组:arange(),类似range(),在给定间隔内返回均匀间隔的值。

print(np.arange(10))    # 返回0-9,整型
print(np.arange(10.0))  # 返回0.0-9.0,浮点型
print(np.arange(5,12))  # 返回5-11
print(np.arange(5.0,12,2))  # 返回5.0-12.0,步长为2
print(np.arange(10000))  # 如果数组太大而无法打印,NumPy会自动跳过数组的中心部分,并只打印边角:

输出结果:

[0 1 2 3 4 5 6 7 8 9]
[0. 1. 2. 3. 4. 5. 6. 7. 8. 9.]
[ 5  6  7  8  9 10 11]
[ 5.  7.  9. 11.]
[   0    1    2 ... 9997 9998 9999]

8.创建数组_3 linspace()函数

# 创建数组:linspace():返回在间隔[开始,停止]上计算的num个均匀间隔的样本。

ar1 = np.linspace(2.0, 3.0, num=5)   #输出两端都是闭合的,包括3
ar2 = np.linspace(2.0, 3.0, num=5, endpoint=False)  #输出右端不闭合,不包括3
ar3 = np.linspace(2.0, 3.0, num=5, retstep=True)
print(ar1,type(ar1))
print(ar2)
print(ar3,type(ar3))
# numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
# start:起始值,stop:结束值
# num:生成样本数,默认为50
# endpoint:如果为真,则停止是最后一个样本。否则,不包括在内。默认值为True。
# retstep:如果为真,返回(样本,步骤),其中步长是样本之间的间距,输出为一个包含2个元素的元祖,第一个元素为array,第二个为步长实际值

输出结果:

[2.   2.25 2.5  2.75 3.  ] <class 'numpy.ndarray'>
[2.  2.2 2.4 2.6 2.8]
(array([2.  , 2.25, 2.5 , 2.75, 3.  ]), 0.25) <class 'tuple'>

9.

ar3 = np.linspace(2.0, 3.0, num=5, retstep=True)
ar = ar3 [0]
bc = ar3 [1]
print("创建的数组为:",ar)
print("创建的数组的步长为:",bc)

输出结果:

创建的数组为: [2.   2.25 2.5  2.75 3.  ]
创建的数组的步长为: 0.25

10.创建数组_3  zeros()/zeros_like()/ones()/ones_like()

ar1 = np.zeros(5)  
ar2 = np.zeros((2,2), dtype = np.int)
ar = np.zeros((3,3,3))
print(ar) #三维数组
print(ar1,ar1.dtype)
print(ar2,ar2.dtype)
print('------')
# numpy.zeros(shape, dtype=float, order='C'):返回给定形状和类型的新数组,用零填充。
# shape:数组纬度,二维以上需要用(),且输入参数为整数
# dtype:数据类型,默认numpy.float64
# order:是否在存储器中以C或Fortran连续(按行或列方式)存储多维数据。

ar3 = np.array([list(range(5)),list(range(5,10))])
ar4 = np.zeros_like(ar3)
print(ar3)
print(ar4)
print('------')
# 返回具有与给定数组相同的形状和类型的零数组,这里ar4根据ar3的形状和dtype创建一个全0的数组

ar5 = np.ones(9)
ar6 = np.ones((2,3,4))
ar7 = np.ones_like(ar3)
print(ar5)
print(ar6)
print(ar7)
# ones()/ones_like()和zeros()/zeros_like()一样,只是填充为1

输出结果:

[[[0. 0. 0.]
  [0. 0. 0.]
  [0. 0. 0.]]

 [[0. 0. 0.]
  [0. 0. 0.]
  [0. 0. 0.]]

 [[0. 0. 0.]
  [0. 0. 0.]
  [0. 0. 0.]]]
[0. 0. 0. 0. 0.] float64
[[0 0]
 [0 0]] int32
------
[[0 1 2 3 4]
 [5 6 7 8 9]]
[[0 0 0 0 0]
 [0 0 0 0 0]]
------
[1. 1. 1. 1. 1. 1. 1. 1. 1.]
[[[1. 1. 1. 1.]
  [1. 1. 1. 1.]
  [1. 1. 1. 1.]]

 [[1. 1. 1. 1.]
  [1. 1. 1. 1.]
  [1. 1. 1. 1.]]]
[[1 1 1 1 1]
 [1 1 1 1 1]]

11. 创建数组_4 eye()

# 创建数组:eye()

print(np.eye(5))
# 创建一个正方的N*N的单位矩阵,对角线值为1,其余为0

输出结果:

[[1. 0. 0. 0. 0.]
 [0. 1. 0. 0. 0.]
 [0. 0. 1. 0. 0.]
 [0. 0. 0. 1. 0.]
 [0. 0. 0. 0. 1.]]

ndarray的数据类型

bool 用一个字节存储的布尔类型(True或False)

inti 由所在平台决定其大小的整数(一般为int32或int64)

int8 一个字节大小,-128 至 127

int16 整数,-32768 至 32767

int32 整数,-2 31 至 2 32 -1

int64 整数,-2 63 至 2 63 - 1

uint8 无符号整数,0 至 255

uint16 无符号整数,0 至 65535

uint32 无符号整数,0 至 2 ** 32 - 1

uint64 无符号整数,0 至 2 ** 64 - 1

float16 半精度浮点数:16位,正负号1位,指数5位,精度10位

float32 单精度浮点数:32位,正负号1位,指数8位,精度23位

float64或float 双精度浮点数:64位,正负号1位,指数11位,精度52位

complex64 复数,分别用两个32位浮点数表示实部和虚部

complex128或complex 复数,分别用两个64位浮点数表示实部和虚部

 

posted @ 2018-11-04 12:38  RamboBai  阅读(1473)  评论(0编辑  收藏  举报