codeforces#1332F. Independent Set(树上dp)
F. Independent Set
题意:
all the vertices in the original graph that are incident on at least one edge in the subgraph.这句话不太理解
edge-induced subgraph(诱导子图)
求出所有诱导子图的独立点集的个数和
分析:
这题想到是$dp$,但是一直没有想好怎么做,看了题解才明白的
可以从根节点与儿子节点之间的边是否切断来考虑。
定义$dp[u][0]$为u节点不被涂色并且$u$作为根节点的方案数,定义$dp[u][1]$为$u$节点被涂色并且$u$作为根节点的方案数
定义$dp[u][2]$为$u$作为根节点并且它和子树的边都被切断的方案数
分析$dp[u][0]$的转移方程,其它两个类似
根节点不染色的方案数为$dp[u][0]$
累乘子树的方案数,子树的根可以是染色,不染色,被切断(它的儿子与它断开),三种情况
染色是$2*dp[v][1]-dp[v][2]$种,不染色是$2*dp[v][0]-dp[v][2]$,切断是$dp[v][2]$种,把他们加起来即可
转移方程:
$dp[u][2]=\prod_{v}(dp[v][0]+dp[v][1]-2*dp[v][2]+dp[v][2])$
$dp[u][1]=\prod_{v}(2*dp[v][0]+dp[v][1]-2*dp[v][2]+dp[v][2])$
$dp[u][0]=\prod_{v}(2*dp[v][0]+2*dp[v][1]-2*dp[v][2]+dp[v][2])$
AC代码:
#include <bits/stdc++.h> using namespace std; #define rep(i,a,b) for (int i=(a);i<=(b);i++) #define per(i,a,b) for (int i=(b);i>=(a);i--) #define pb push_back #define mp make_pair #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef long long ll; typedef vector<int> VI; typedef pair<int,int> PII; const ll mod=998244353 ; const int maxn=3e5+7; VI ve[maxn]; ll dp[maxn][4]; int n; void dfs(int x,int fa){ dp[x][0]=dp[x][1]=dp[x][2]=1; for(auto v:ve[x]){ if(v==fa)continue; dfs(v,x); dp[x][2]=dp[x][2]*(dp[v][0]+dp[v][1]-dp[v][2]+mod)%mod; dp[x][1]=dp[x][1]*(dp[v][0]*2+dp[v][1]-dp[v][2]+mod)%mod; dp[x][0]=dp[x][0]*(dp[v][0]*2+dp[v][1]*2-dp[v][2]+mod)%mod; } } int main() { scanf("%d",&n); rep(i,1,n-1){ int a,b; scanf("%d %d",&a,&b); ve[a].pb(b); ve[b].pb(a); } dfs(1,-1); // rep(i,1,n)cout<<dp[i][0]<<" "<<dp[i][1]<<" "<<dp[i][2]<<endl; printf("%lld\n",(dp[1][0]+dp[1][1]-dp[1][2]+mod-1)%mod); return 0; }