codeforces#1333 E. Road to 1600(构造)

E. Road to 1600

题意:

车可以走直线,皇后可以走直线和对角线

玩家的起点在1号点,每次移动选择一个可以直接到达的没被访问的点,如果没有这样的点,可以花费一个代价传送到最小的没访问的点

直到所有点被访问

构造一种方案,使得车的花费严格小于皇后的花费

分析:

这题是看杜老师讲题写的

杜老师首先用暴力构造了一个3*3的可行方案,很巧妙

$$ \begin{vmatrix}4&3  & 1\\ 5 & 2 &8 \\9 &6  &7 \end{vmatrix} $$

对于$n$等于1或者2的情况,因为两两互达,所以车和皇后没有区别 

对于$n$大于3的情况,我们可以把这个矩阵放在左上角,然后把矩阵之外的点走完并且入口刚好是矩阵的入口

例如$n=4$

$$\begin{vmatrix}4&3  & 1&7 \\ 5 & 2 & 8 &6 \\ 9 & 6  & 7 & 5  \\ 1 & 2 & 3 & 4 \end{vmatrix}$$

AC代码:

#include <bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for (int i=(a);i<=(b);i++)
#define per(i,a,b) for (int i=(b);i>=(a);i--)
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define SZ(x) ((int)(x).size())

typedef long long ll;
typedef vector<int> VI;
typedef pair<int,int> PII;

const ll mod=998244353 ;
const int maxn=500+7;

int ma[maxn][maxn];
int n;
int main() {
	scanf("%d",&n);
	if(n<=2){
		printf("-1");
		return 0;
	}
	int now=n*n;
	int cnt=9;
	ma[1][1]=6;
	ma[1][2]=7;
	ma[1][3]=9;
	ma[2][1]=5;
	ma[2][2]=8;
	ma[2][3]=2;
	ma[3][1]=1;
	ma[3][2]=4;
	ma[3][3]=3;
	rep(i,4,n){
		if(i%2==0){
			rep(j,1,i)ma[j][i]=++cnt;
			per(j,1,i-1)ma[i][j]=++cnt;
		}else{
			rep(j,1,i)ma[i][j]=++cnt;
			per(j,1,i-1)ma[j][i]=++cnt;
		}
	}
	rep(i,1,n){
		rep(j,1,n){
			printf("%d%c",n*n-ma[i][j]+1," \n"[j==n]);
		}
	}
    return 0;
}

  

posted @ 2020-04-09 23:29  czh~  阅读(244)  评论(0编辑  收藏  举报