[2017北航软工]第1次个人项目——求解数独与生成数独终局

[2017北航软工]第1次个人项目

——求解数独与生成数独终局

项目GitHub地址 https://github.com/Hesitater/Sudoku

解题思路

这次的数独问题主要可分为求解数独与生成终局两大部分。最开始拿到题目的时候,我决定先完成生成终局,再求解数独,然而找到的大部分生成数独的算法都无法满足生成1000000个不同终局的要求。虽然初始决策的错误让我绕了一些弯路,但也让我拜识不同生成终局的算法,在这里将找到的终局生成算法贴出来:

前两个算法用的都是对已有终局进行行、列、单元格交换的生成方法,最后一个算法比较有特色,虽然也需要终局,但相较前两者加入了一定随机性。

求解数独

在发现先生成终局这条路走不通后,我改变了策略,选择先完成求解数独的功能。在谷歌求解算法的过程中,翻到了Ladit同学的这篇博客:深度优先搜索和回溯法生成数独。我最后采用了博客中推荐的DLX算法来求解数独。由于使用指针操作以及算法解法的巧妙,DLX算法算是数独求解算法当中效率较高的,以下是对DLX算法讲解得比较全面而又易懂的两篇博客:

生成终局

生成终局同样利用求解数独的DLX算法就能完成。如果将DLX算法看做一个函数,求解数独的过程就是把挖了空的终局作为参数传给函数,让函数把空位填满;生成终局的过程就是把没有数字的空数独(除了第一个格子被填上指定数字)作为参数传给函数,让函数把空位填满。

这篇博客也提供了一个DLX和深度优先搜索结合的方式生成数独。这个算法给数独生成增加了一定随机性而又能保证生成的终局数量,值得参考——产生数独谜题

整体设计

类结构:

一共有8各类,可分为两大部分:

  • DLX:

      1. DLXNode——DLX节点类
      1. ColumnHead——DLXNode子类,列头类
      1. CommonNode——DLXNode子类,普通节点类
      1. DLXGenerator——DLX十字链表创建类
      1. DLXSolver——DLX问题求解类
  • Sudoku:

      1. SudokuLoader——文件存取操作类
      1. SudokuSolver——数独求解类,以DLXSolver为核心
      1. SudokuGenerator——终局生成类

代码组织:

数独的求解与终局生成都是建立在DLX算法的基础上的,因此为DLX算法单独设立了5个类来管理DLX算法,明确各部分分工。

单元测试:

贴出程序的两个重要方法的测试
SudokuSolver::solveSudoku:测试解出的数独是否与答案相符

TEST_METHOD(TestSolveSudoku) {
    vector<int> puzzleVector;
    vector<int> solutionVector;
    int puzzle[81] = {
        0,1,2,3,4,0,7,8,9,
                7,8,9,5,1,2,3,4,6,
                3,4,6,7,8,9,5,1,2,
                2,5,1,0,3,4,9,6,7,
                6,9,7,2,5,1,8,3,4,
                8,3,4,6,9,7,2,5,0,
                1,2,5,4,7,3,6,9,8,
                9,6,8,0,2,5,4,7,3,
                4,7,3,9,6,8,1,2,0 };
    vector solution[81] = {
        5,1,2,3,4,6,7,8,9,
                7,8,9,5,1,2,3,4,6,
                3,4,6,7,8,9,5,1,2,
                2,5,1,8,3,4,9,6,7,
                6,9,7,2,5,1,8,3,4,
                8,3,4,6,9,7,2,5,1,
                1,2,5,4,7,3,6,9,8,
                9,6,8,1,2,5,4,7,3,
                4,7,3,9,6,8,1,2,5
    };
    for (int i = 0; i < 81; i++) {
        puzzleVector.push_back(puzzle[i]);
    }
    SudokuSolver solver;
    DLXNode* listHead = new DLXNode();
    solver.solveSudoku(listHead, puzzleVector, solutionVector);
    for (int j = 0; j < 81; ++j) {
        Assert::AreEqual(solutionVector[i], solution[i]);
    }
}

SudokuGenerator::generate: 测试生成的数独是否满足数独的约束与格式

TEST_METHOD(TestGenerateSudokus) {
        SudokuSolver solver;
        DLXNode* listHead = new DLXNode();
        vector<vector<int>> sudokus;
        vector<int> answers;
        SudokuGenerator generator;
        generator.generateSudokus(10);
        for (int i = 0; i < 10; ++i) {
            Assert::AreEqual(solver.solveSudoku(listHead, sudokus[i], answers),true);
        }
}

性能分析


上图为VS生成的本次项目的样本分析报告

从上面的调用树可以看出,整个程序占用资源最多的方法是SudokuSolver::solveWithMultiAnswers,这个方法主要负责利用DLX算法完成求解工作,暂时未想到性能改进的办法。

代码说明

DLX部分:

  • DLXGenerator::appendLine:增加一行元素到DLX十字链表底部
void DLXGenerator::appendLine(vector<ColumnHead*> columnHeads, vector<int> elementSubscripts, int rowIndex){
    CommonNode* lastHorizontalNode = NULL;
    CommonNode* firstHorizontalNode = NULL;

    for (int i = 0; i < elementSubscripts.size(); ++i) {
        int subscript = elementSubscripts[i];
        ColumnHead* columnHead = columnHeads[subscript];
        CommonNode* currentNode = new CommonNode(rowIndex, columnHead);
        DLXNode *lastVerticalNode = columnHead->upNode;

        //Link vertical nodes
        lastVerticalNode->appendDownNode(currentNode);
        currentNode->appendDownNode(columnHead);

        //Link horizontal nodes
        if (i == 0) {
            firstHorizontalNode = currentNode;
            lastHorizontalNode = currentNode;
        } else {
            lastHorizontalNode->appendRightNode(currentNode);
            lastHorizontalNode = currentNode;
        }

        currentNode->columnIndex = columnHead->columnIndex;
        columnHead->numberOfOne++;
    }

    lastHorizontalNode->appendRightNode(firstHorizontalNode);
}
  • DLXSolver::solveWithOneAnswer:求解DLX十字链(只求一个解),参数listHead为DLX十字链链头,solution中存储所有解的行号。
bool DLXSolver::solveWithOneAnswer(DLXNode *listHead, vector<int>& solution, int depth) {
    if (listHead->rightNode == listHead) { //Solution found
        /*for (int i = 0; i < depth; ++i) { //Debugging code
            cout << solution[i] <<endl;
        }*/
        return true;
    }

    //Select column with least one's
    ColumnHead* columnHead = selectColumn(listHead);
    cover(columnHead);

    bool solutionFound = false; //Usage: return type

    //Loop rows with one in column below columnHead
    for (DLXNode* node = columnHead->downNode; node != columnHead; node = node->downNode) {
        solution.push_back(((CommonNode*)node)->rowIndex); //Add temporary tempSolution node

        for (DLXNode* node2 = node->rightNode; node2 != node; node2 = node2->rightNode) {
            cover(((CommonNode*)node2)->columnHead);
        }

        depth++;
        solutionFound = solveWithOneAnswer(listHead, solution, depth); //Enter next recursion level
        depth--;

        for (DLXNode* node2 = node->leftNode; node2 != node; node2 = node2->leftNode) {
            uncover(((CommonNode*)node2)->columnHead);
        }

        if (solutionFound){ //Solution found, jump out loop
            break;
        }

        solution.pop_back(); //Delete temporary tempSolution node
    }
    uncover(columnHead);

    return solutionFound;
}
  • DLXSolver:: solveWithCertainAnswers:对一个DLX十字链表,求多(answerCount)个解
void DLXSolver:: solveWithCertainAnswers(DLXNode *listHead, vector<int>& tempSolution, vector<vector<int>>& lastSolution,
                                         int answerCount, int depth) {
    if (listHead->rightNode == listHead) { //One solution found
        /*for (int i = 0; i < depth; ++i) { //Debugging code
            cout << tempSolution[i] <<endl;
        }*/
        lastSolution.push_back(tempSolution);
        return;
    }

    ColumnHead* columnHead = selectColumn(listHead);
    cover(columnHead);

    for (DLXNode* node = columnHead->downNode; node != columnHead; node = node->downNode) {
        tempSolution.push_back(((CommonNode*)node)->rowIndex); //Add temporary tempSolution node

        for (DLXNode* node2 = node->rightNode; node2 != node; node2 = node2->rightNode) {
            cover(((CommonNode*)node2)->columnHead);
        }

        depth++;
        solveWithCertainAnswers(listHead, tempSolution, lastSolution, answerCount, depth); //Enter next recursion level
        depth--;

        for (DLXNode* node2 = node->leftNode; node2 != node; node2 = node2->leftNode) {
            uncover(((CommonNode*)node2)->columnHead);
        }

        if (lastSolution.size() == answerCount) { //Solution count achieved get out of recursion
            break;
        }

        tempSolution.pop_back(); //Delete temporary tempSolution node
    }
    uncover(columnHead);
    return;
}

Sudoku部分:

  • SudokuSolver::solveSudoku:得到所给数独题的一个解,传到answer中
void SudokuSolver::solveSudoku(DLXNode *listHead, vector<int> &sudoku, vector<int> &answer) {
    transformToList(sudoku, listHead);
    DLXSolver dlxSolver = DLXSolver();
    vector<int> solution;
    dlxSolver.solveWithOneAnswer(listHead, solution, 0); //Got DLX answer

    solutionToAnswer(solution, answer); //Answer got
}
  • SudokuSolver::solveWithMultiAnswers:对一个数独题求多(answercount)个解
* void SudokuSolver::solveWithMultiAnswers(DLXNode *listHead, vector<int>& sudoku, vector<vector<int>>& answers, int answerCount) {
    transformToList(sudoku, listHead);
    DLXSolver dlxSolver = DLXSolver();
    vector<int> tempSolution;
    vector<vector<int>> lastSolution;
    dlxSolver.solveWithCertainAnswers(listHead, tempSolution, lastSolution, answerCount, 0); //Got DLX answer

    //Get answers from lastSolution
    for (int i = 0; i < answerCount; ++i) {
        vector<int> answer;
        solutionToAnswer(lastSolution[i], answer);
        answers.push_back(answer);
    }
}
  • SudokuGenerator:: generateSudokus:创建sudokuCount个不重复的终局
vector<vector<int>> SudokuGenerator:: generateSudokus(int sudokuCount) {
    vector<vector<int>> answers;

    //Create an sudoku with all zero
    vector<int> originalSudoku;
    for (int j = 0; j < sudokuSize; ++j) {
        if (j == 0) { //The first one must be 5
            originalSudoku.push_back(5);
        }else {
            originalSudoku.push_back(0);
        }
    }

    //Solve the zero sudoku to get sudoku outcomes
    DLXGenerator generator = DLXGenerator();
    DLXNode* listHead = new DLXNode();
    SudokuSolver solver = SudokuSolver();
    solver.solveWithMultiAnswers(listHead, originalSudoku, answers, sudokuCount);
    return answers;
}

PSP表格

PSP2.1 Personal Software Process Stages 预估耗时(分钟) 实际耗时(分钟)
Planning 计划 5 7
· Estimate · 估计这个任务需要多少时间 5 7
Development 开发 430 1020
· Analysis · 需求分析 (包括学习新技术) 120 600
· Design Spec · 生成设计文档 30 0
· Design Review · 设计复审 (和同事审核设计文档) 0 0
· Coding Standard · 代码规范 (为目前的开发制定合适的规范) 10 0
· Design · 具体设计 20 120
· Coding · 具体编码 120 120
· Code Review · 代码复审 10 0
· Test · 测试(自我测试,修改代码,提交修改) 120 180
Reporting 报告 70 160
· Test Report · 测试报告 30 30
· Size Measurement · 计算工作量 10 5
· Postmortem & Process Improvement Plan · 事后总结, 并提出过程改进计划 30 125
合计 505 1207

小结

万事开头难。由于对语法、算法和各种工具的生疏,这次的项目花了不少时间,Deadline前才勉强把作业的基本要求达成。这一周的练习算是让我头次真正体会到高效学习的重要性,打算在下次项目尝试指定阶段性目标,可把一周的项目周期切割成三份,每个项目制定周期定为2~4天,希望能对效率提高有所帮助。

posted @ 2017-09-25 23:42  captainYi  阅读(330)  评论(3编辑  收藏  举报