作诗

传送门

听说这是一道虐狗题(大雾

题目要求每次询问一段区间之内有多少个数出现了偶数次。我们故技重施,使用分块去解决。和求区间众数很相似,先预处理出每个数在前i个块中出现过多少次,之后预处理出块i到块j有多少个元素出现过正偶数次。做过上一道题应该觉得这个很简单了……

查询的时候,对于整块区间先取出出现正偶数次的元素个数,对于每个零散元素,统计出现次数和在整块内的出现次数,之后通过奇偶性比较来确定一共有多少元素出现在区间之内即可。

但是这道题强力卡常,一开始用O2没什么感觉,去掉O2一开始20,改成不用memset70,再优化一些勉强80,实在卡不过去了,只能开O2,还是跑的不错的。

看一下代码。

// luogu-judger-enable-o2
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<set>
#include<queue>
#define rep(i,a,n) for(register int i = a;i <= n;i++)
#define per(i,n,a) for(register int i = n;i >= a;i--)
#define enter putchar('\n')

using namespace std;
typedef long long ll;
const int M = 100005;
const int N = 320;
const int INF = 1000000009;

inline int read()
{
    int ans = 0,op = 1;
    char ch = getchar();
    while(ch < '0' || ch > '9')
    {
    if(ch == '-') op = -1;
    ch = getchar();
    }
    while(ch >= '0' && ch <= '9')
    {
    ans *= 10;
    ans += ch - '0';
    ch = getchar();
    }
    return ans * op;
}

inline void write(int x)
{
    if(x < 0) x = -x,putchar('-');
    if(x >= 10) write(x / 10);
    putchar(x % 10 + '0');
}

int n,c,m,B,blo[M],sum[N][M],l[N],r[N],cnt,even[N][N],sta[M],top,cur[M],a[M],last,g = 1,now,x,y;

void clear()
{
    while(top) cur[sta[top]] = 0,top--;
}

inline void init()
{
    rep(i,1,cnt)
    {
    rep(j,1,c)
    {
        if(!sum[i-1][j]) continue;
        sum[i][j] += sum[i-1][j];
    }
    rep(j,l[i],r[i]) sum[i][a[j]]++;
    }
    rep(i,1,cnt)
    {
    now = 0,g = i;
    rep(j,l[i],n)
    {
        if(!cur[a[j]]) sta[++top] = a[j];
        cur[a[j]]++;
        if((cur[a[j]] & 1) && cur[a[j]] != 1) now--;
        else if(!(cur[a[j]] & 1)) now++;
        if(j == r[g]) even[i][g] = now,g++;
    }
    clear();
    }
}

int query(int x,int y)
{
    int L = blo[x],R = blo[y];
    clear();
    now = 0;
    if(L == R)
    {
    rep(i,x,y)
    {
        if(!cur[a[i]]) sta[++top] = a[i];
        cur[a[i]]++;
        if(cur[a[i]] & 1 && cur[a[i]] != 1) now--;
        else if(!(cur[a[i]] & 1)) now++;
    }
    return now;
    }
    now = even[L+1][R-1];
    rep(i,x,r[L])
    {
    if(!cur[a[i]]) sta[++top] = a[i];
    cur[a[i]]++;
    }
    rep(i,l[R],y)
    {
    if(!cur[a[i]]) sta[++top] = a[i];
    cur[a[i]]++;
    }
    while(top)
    {
    int k = sta[top],p = sum[R-1][k] - sum[L][k];
    if((cur[k] & 1) && (!(p & 1)) && p != 0) now--;
    else if((cur[k] & 1) && (p & 1)) now++;
    else if(!(cur[k] & 1) && p == 0) now++;
    cur[k] = 0,top--;
    }
    return now;
}

int main()
{
    n = read(),c = read(),m = read(),B = sqrt(n);
    cnt = (n % B) ? n / B + 1 : n / B;
    rep(i,1,cnt) l[i] = r[i-1] + 1,r[i] = l[i] + B - 1;
    r[cnt] = n;
    rep(i,1,n)
    {
    blo[i] = g;
    if(i == r[g]) g++;
    }
    rep(i,1,n) a[i] = read();
    init();
    rep(i,1,m)
    {
    x = read() + last + 1,y = read() + last + 1;
    if(x > n) x -= n;
    if(y > n) y -= n;
    if(x > y) x ^= y ^= x ^= y;
    last = query(x,y);
    write(last),enter;
    }
    return 0;
}

 

posted @ 2018-10-24 07:33  CaptainLi  阅读(129)  评论(0编辑  收藏  举报