LOJ114 k大异或和

传送门

(vjudge和hdu也有但是我觉得LOJ好看!而且限制少!)

不过本题描述有误,应该是k小。

首先我们需要对线性基进行改造。需要把每一位改造成为,包含最高位的能异或出来的最小的数。

为啥呢?因为如果不满足这个条件的话,那么在之后的异或过程中,大的数反而会被小的数异或的更小。

满足了上述性质之后,我们就能知道,首先高位的1一定比低位的1更能使异或和变大,而低位的1一定能使异或和变大。那么我们先把线性基中所有元素压入栈,之后把k二进制拆分,异或上对应的位置的值即可。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstring>
#define rep(i,a,n) for(register int i = a;i <= n;i++)
#define per(i,n,a) for(register int i = n;i >= a;i--)
#define enter putchar('\n')
#define pr pair<int,int>
#define mp make_pair
#define fi first
#define sc second
#define I inline
using namespace std;
typedef long long ll;
const int M = 20005;
const int N = 10000005;
 
ll read()
{
   ll ans = 0,op = 1;char ch = getchar();
   while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
   while(ch >='0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
   return ans * op;
}

ll p[65],k,x,cnt,f[65];
int T,n,q;

void insert(ll x)
{
   per(i,63,0)
   {
      if(!((x>>i) & 1)) continue;
      if(!p[i]) {p[i] = x;break;}
      x ^= p[i];
   }
}

void rebuild()
{
   rep(i,0,63)
   {
      per(j,i-1,0) if((p[i] ^ p[j]) < p[i]) p[i] ^= p[j];
      if(p[i]) f[cnt++] = p[i];
   }
}

ll calc(ll k)
{
   ll cur = 0;
   rep(i,0,cnt-1) if(k & (1ll << i)) cur ^= f[i];
   return cur;
}

int main()
{
   scanf("%d",&n);
   rep(i,1,n) scanf("%lld",&x),insert(x);
   rebuild();
   scanf("%d",&q);
   while(q--)
   {
      scanf("%lld",&k);
      if(cnt != n) k--;
      if(k >= (1ll<<cnt)) printf("-1\n");
      else printf("%lld\n",calc(k));
   }
   return 0;
}

posted @ 2019-01-09 23:33  CaptainLi  阅读(484)  评论(0编辑  收藏  举报