[国家集训队]Crash的数字表格 / JZPTAB
题目要求,求:
\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)
\]
先转化为gcd的形式,然后枚举gcd。
\[\sum_{i=1}^n\sum_{j=1}^m\sum_{d=1}^n\frac{ij}{d}[gcd(i,j) = d]
\]
把d除进去,套用莫比乌斯函数的性质:
\[\sum_{d=1}^nd\sum_{i=1}^{\frac{n}{d}}i\sum_{j=1}^{\frac{m}{d}}j\sum_{p|i.p|j}\mu(p)
\]
继续替换得到:
\[\sum_{d=1}^nd\sum_{p=1}^{\frac{n}{d}}p^2\mu(p)s(\frac{n}{dp})s(\frac{m}{dp})
\]
其中s(n)表示\(\sum_{i=1}^ni\)
这个其实已经可以做了,直接枚举d,然后里面使用整除分块完成。这个看起来复杂度是\(O(n\sqrt{n})\)的,但是实际上它每次没有跑满,复杂度是\(O(n)\)左右的。
不过这个是弱化版,加强版还要求处理多组数据,这时候上面的做法就不好使了。继续推导,设\(T=dp\)
\[\sum_{T=1}^nT\sum_{d|T}d\mu(d)s(\frac{n}{T})s({\frac{m}{T}})
\]
设\(h(T) = \sum_{d|T}d\mu(d)\)问题在于怎么能快速求出\(h(T)\)
这并不是一个积性函数,但是我们仍然能线性把它筛出来。首先考虑T为质数的时候,这时候显然\(h(T) = 1 - T\)。如果现在加入一个已经出现在T中的质因子p,那么所有T原来的因子在乘上这个p之后,p的指数必然大于1,也就是说其莫比乌斯函数的值是0,原来的因子不变,所以\(h(Tp) = h(T)\).再考虑新加入一个因子的情况。加入之后,原来所有的因子其莫比乌斯函数的值变成其相反数,而且因为前面还有乘p,所以\(h(Tp) = (1-p)h(T)\),即\(h(Tp) = h(p)h(T)\)
所以我们把它线性筛出来,之后整除分块做即可。单次复杂度\(O(\sqrt{n})\)。注意因为此题有取模,所以要注意前缀和相减的时候,先变成正数。
弱化版代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<set>
#include<vector>
#include<map>
#include<queue>
#define rep(i,a,n) for(int i = a;i <= n;i++)
#define per(i,n,a) for(int i = n;i >= a;i--)
#define enter putchar('\n')
#define fr friend inline
#define y1 poj
#define mp make_pair
#define pr pair<int,int>
#define fi first
#define sc second
#define pb push_back
using namespace std;
typedef long long ll;
const int M = 10000005;
const int INF = 1000000009;
const ll mod = 20101009;
const double eps = 1e-7;
int read()
{
int ans = 0,op = 1;char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
return ans * op;
}
ll k,p[M],mu[M],tot,n,m;
ll sum[M],ans,pre[M];
bool np[M];
void euler()
{
np[1] = 1,mu[1] = 1;
rep(i,2,M-2)
{
if(!np[i]) p[++tot] = i,mu[i] = -1;
for(int j = 1;i * p[j] <= M-2;j++)
{
np[i * p[j]] = 1;
if(!(i % p[j])) break;
mu[i * p[j]] = -mu[i];
}
}
rep(i,1,M-2) pre[i] = (pre[i-1] + (ll)i * (ll)i % mod * mu[i]) % mod;
rep(i,1,M-2) sum[i] = (sum[i-1] + (ll)i) % mod;
}
int main()
{
euler();
n = read(),m = read();
int lim = min(n,m);
rep(d,1,lim)
{
int a = n / d,b = m / d,c = min(a,b);
ll cur = 0;
for(int i = 1,j;i <= c;i = j + 1)
{
j = min(a / (a / i),b / (b / i));
cur += ((pre[j] - pre[i-1] + mod) % mod * sum[a / i] % mod * sum[b / i] % mod),cur %= mod;
}
ans += (cur * (ll)d % mod),ans %= mod;
}
printf("%lld\n",ans);
return 0;
}
强化版代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<set>
#include<vector>
#include<map>
#include<queue>
#define rep(i,a,n) for(int i = a;i <= n;i++)
#define per(i,n,a) for(int i = n;i >= a;i--)
#define enter putchar('\n')
#define fr friend inline
#define y1 poj
#define mp make_pair
#define pr pair<int,int>
#define fi first
#define sc second
#define pb push_back
using namespace std;
typedef long long ll;
const int M = 10000005;
const int INF = 1000000009;
const ll mod = 20101009;
const double eps = 1e-7;
int read()
{
int ans = 0,op = 1;char ch = getchar();
while(ch < '0' || ch > '9') {if(ch == '-') op = -1;ch = getchar();}
while(ch >= '0' && ch <= '9') ans = ans * 10 + ch - '0',ch = getchar();
return ans * op;
}
ll k,p[M],mu[M],tot,n,m;
ll sum[M],ans,pre[M],f[M];
bool np[M];
void euler()
{
np[1] = 1,f[1] = 1;
rep(i,2,M-2)
{
if(!np[i]) p[++tot] = i,f[i] = (1 - i + mod) % mod;
for(int j = 1;i * p[j] <= M-2 && j <= tot;j++)
{
np[i * p[j]] = 1;
if(!(i % p[j])) {f[i * p[j]] = f[i];break;}
f[i * p[j]] = f[i] * f[p[j]] % mod;
}
}
rep(i,1,M-2) pre[i] = (pre[i-1] + ((ll)i * f[i] % mod)) % mod;
rep(i,1,M-2) sum[i] = (sum[i-1] + (ll)i) % mod;
}
int main()
{
euler();
n = read(),m = read();
int lim = min(n,m);
for(int i = 1,j;i <= lim;i = j + 1)
{
j = min(n / (n / i),m / (m / i));
ans += ((pre[j] - pre[i-1] + mod) % mod * sum[n / i] % mod * sum[m / i] % mod),ans %= mod;
}
printf("%lld\n",ans);
return 0;
}
当你意识到,每个上一秒都成为永恒。