Kafka——Spring集成Kafka

 

准备工作

  • 安装kafka+zookeeper环境
  • 利用命令创建好topic
  • Pom文件,引入spring-kafka jar包这里需要注意2个地方:

  1. kafka-clients 包版本与服务器端kafka-clients版本保持一致(查看服务器kafka版本方法 在kafka安装目录下libs 中查找kafka-clients开头的jar文件)
  2. 引入的spring-kafka 版本在2.0或者2.X 时Spring版本在5.0才能支持
  ..........
<dependency> <groupId>org.springframework.kafka</groupId> <artifactId>spring-kafka</artifactId> <version>2.1.8.RELEASE</version> </dependency>
  ..........

参考官网 http://kafka.apache.org/documentation/ 

 

XML配置方式

  • 生产者

配置:

 <?xml version="1.0" encoding="UTF-8"?>
 <beans xmlns="http://www.springframework.org/schema/beans"
     xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:context="http://www.springframework.org/schema/context"
     xsi:schemaLocation="http://www.springframework.org/schema/beans  
          http://www.springframework.org/schema/beans/spring-beans-3.0.xsd  
          http://www.springframework.org/schema/context  
          http://www.springframework.org/schema/context/spring-context.xsd">
     <context:property-placeholder location="classpath*:config/application.properties" />
     <!-- 定义producer的参数 -->
     <bean id="producerProperties" class="java.util.HashMap">
         <constructor-arg>
             <map>
                 <entry key="bootstrap.servers" value="${bootstrap.servers}" />
                 <entry key="group.id" value="${group.id}" />
                 <entry key="retries" value="${retries}" />
                 <entry key="batch.size" value="${batch.size}" />
                 <entry key="linger.ms" value="${linger.ms}" />
                 <entry key="buffer.memory" value="${buffer.memory}" />            
                 <entry key="acks" value="${acks}" />              
                 <entry key="key.serializer" value="org.apache.kafka.common.serialization.StringSerializer" />
                 <entry key="value.serializer" value="org.apache.kafka.common.serialization.StringSerializer" />
             </map>
         </constructor-arg>
     </bean>
 
     <!-- 创建kafkatemplate需要使用的producerfactory bean -->
     <bean id="producerFactory"
         class="org.springframework.kafka.core.DefaultKafkaProducerFactory">
         <constructor-arg>
             <ref bean="producerProperties" />
         </constructor-arg>
     </bean>
 
     <!-- 创建kafkatemplate bean,使用的时候,只需要注入这个bean,即可使用template的send消息方法 -->
     <bean id="kafkaTemplate" class="org.springframework.kafka.core.KafkaTemplate">
         <constructor-arg ref="producerFactory" />
         <constructor-arg name="autoFlush" value="true" />
         <property name="defaultTopic" value="default" />
     </bean>
 </beans>

如上图,xml主要配置了KafkaTemplate的构造参数producerFactory和autoFlush,对应了一个KafkaTemplate源码中的2参构造函数。

  1. producerProperties:设置生产者工厂需要的配置
  2. producerFactory:定义了生产者工厂构造方法
  3. kafkaTemplate:定义了使用producerFactory和是否自动刷新,2个参数来构造kafka生产者模板类

发送消息:

ListenableFuture<SendResult<String, String>> listenableFuture = kafkaTemplate.send("topic", "partition","key","data");
//发送成功回调 SuccessCallback<SendResult<String, String>> successCallback = new SuccessCallback<SendResult<String, String>>() { @Override public void onSuccess(SendResult<String, String> result) { //成功业务逻辑 } }
//发送失败回调 FailureCallback failureCallback = new FailureCallback() { @Override public void onFailure(Throwable ex) { //失败业务逻辑 } } listenableFuture.addCallback(successCallback, failureCallback);
  • 消费者

配置:

 <!-- 1.定义consumer的参数 -->
     <bean id="consumerProperties" class="java.util.HashMap">
         <constructor-arg>
             <map>
                 <entry key="bootstrap.servers" value="${bootstrap.servers}" />
                 <entry key="group.id" value="${group.id}" />
                 <entry key="enable.auto.commit" value="${enable.auto.commit}" />
                 <entry key="session.timeout.ms" value="${session.timeout.ms}" />
                 <entry key="key.deserializer"
                     value="org.apache.kafka.common.serialization.StringDeserializer" />
                 <entry key="value.deserializer"
                     value="org.apache.kafka.common.serialization.StringDeserializer" />
             </map>
         </constructor-arg>
     </bean>
 
     <!-- 2.创建consumerFactory bean -->
     <bean id="consumerFactory"
         class="org.springframework.kafka.core.DefaultKafkaConsumerFactory" >
         <constructor-arg>
             <ref bean="consumerProperties" />
         </constructor-arg>
     </bean>
 
     <!-- 3.定义消费实现类 -->
     <bean id="kafkaConsumerService" class="xxx.service.impl.KafkaConsumerSerivceImpl" />
 
     <!-- 4.消费者容器配置信息 -->
     <bean id="containerProperties" class="org.springframework.kafka.listener.config.ContainerProperties">
         <!-- topic -->
         <constructor-arg name="topics">
             <list>
                 <value>${kafka.consumer.topic.credit.for.lease}</value>
                 <value>${loan.application.feedback.topic}</value>
             </list>
         </constructor-arg>
         <property name="messageListener" ref="kafkaConsumerService" />
     </bean>
     <!-- 5.消费者并发消息监听容器,执行doStart()方法 -->
     <bean id="messageListenerContainer" class="org.springframework.kafka.listener.ConcurrentMessageListenerContainer" init-method="doStart" >
         <constructor-arg ref="consumerFactory" />
         <constructor-arg ref="containerProperties" />
         <property name="concurrency" value="${concurrency}" />
     </bean>
  1. consumerProperties-》consumerFactory 载入配置构造消费者工厂
  2. messageListener-》containerProperties 载入容器配置(topics)
  3. consumerFactory+containerProperties-》messageListenerContainer 容器配置(topics)+消息监听器,构造一个并发消息监听容器,并执行初始化方法doStart
  4. 需要注意. KafkaConsumerSerivceImpl 此类 需要实现 MessageListener 接口

消费消息:

方案1:直接实现MessageListener接口,复写onMessage方法,实现自定义消费业务逻辑。

 public class KafkaConsumerSerivceImpl implements MessageListener<String, String> {
     @Override
     public void onMessage(ConsumerRecord<String, String> data) {
         //根据不同主题,消费
         if("主题1".equals(data.topic())){
             //逻辑1
         }else if("主题2".equals(data.topic())){
             //逻辑2
         }
     }
 }

方案2:使用@KafkaListener注解,并设置topic,支持SPEL表达式。这样方便拆分多个不同topic处理不同业务逻辑。(特别是有自己的事务的时候,尤其方便)

import org.springframework.kafka.annotation.KafkaListener;

public class KafkaConsumerSerivceImpl {
    @KafkaListener(topics = "${templar.aggrement.agreementWithhold.topic}")
    void templarAgreementNoticewithhold(ConsumerRecord<String, String> data){
       //消费业务逻辑
    }
}

 

Java注解方式

  • 生产者

配置:

 /**
  * @description kafka 生产者配置
  */
 @Configuration
 @EnableKafka
 public class KafkaProducerConfig {
     public KafkaProducerConfig(){
         System.out.println("kafka生产者配置");
     }
@Bean public ProducerFactory<Integer, String> producerFactory() { return new DefaultKafkaProducerFactory(producerProperties()); } @Bean public Map<String, Object> producerProperties() { Map<String, Object> props = new HashMap<String, Object>(); props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, PropertiesUtil.getInstance().getString("kafka.producer.bootstrap.servers")); props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, PropertiesUtil.getInstance().getString("kafka.producer.key.serializer")); props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,PropertiesUtil.getInstance().getString("kafka.producer.value.serializer")); props.put(ProducerConfig.RETRIES_CONFIG,PropertiesUtil.getInstance().getInt("kafka.producer.retries")); props.put(ProducerConfig.BATCH_SIZE_CONFIG,PropertiesUtil.getInstance().getInt("kafka.producer.batch.size",1048576)); props.put(ProducerConfig.LINGER_MS_CONFIG,PropertiesUtil.getInstance().getInt("kafka.producer.linger.ms")); props.put(ProducerConfig.BUFFER_MEMORY_CONFIG,PropertiesUtil.getInstance().getLong("kafka.producer.buffer.memory",33554432L)); props.put(ProducerConfig.ACKS_CONFIG,PropertiesUtil.getInstance().getString("kafka.producer.acks","all")); return props; } @Bean public KafkaTemplate<Integer, String> kafkaTemplate() { KafkaTemplate kafkaTemplate = new KafkaTemplate<Integer, String>(producerFactory(),true); kafkaTemplate.setDefaultTopic(PropertiesUtil.getInstance().getString("kafka.producer.defaultTopic","default")); return kafkaTemplate; } }

发送消息:

  跟xml配置一样。

  • 消费者

配置:

 /**
  * @description kafka 消费者配置
  */
 @Configuration
 @EnableKafka
 public class KafkaConsumerConfig {
     public KafkaConsumerConfig(){
         System.out.println("kafka消费者配置加载...");
     }
@Bean KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<Integer, String>> kafkaListenerContainerFactory() { ConcurrentKafkaListenerContainerFactory<Integer, String> factory = new ConcurrentKafkaListenerContainerFactory(); factory.setConsumerFactory(consumerFactory()); factory.setConcurrency(3); factory.getContainerProperties().setPollTimeout(3000); return factory; } @Bean public ConsumerFactory<Integer, String> consumerFactory() { return new DefaultKafkaConsumerFactory(consumerProperties()); } @Bean public Map<String, Object> consumerProperties() { Map<String, Object> props= new HashMap<String, Object>(); props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, PropertiesUtil.getInstance().getString("kafka.consumer.bootstrap.servers")); props.put(ConsumerConfig.GROUP_ID_CONFIG, PropertiesUtil.getInstance().getString("kafka.consumer.group.id")); props.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, PropertiesUtil.getInstance().getString("kafka.consumer.enable.auto.commit")); props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, PropertiesUtil.getInstance().getString("kafka.consumer.auto.commit.interval.ms")); props.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, PropertiesUtil.getInstance().getString("kafka.consumer.session.timeout.ms")); props.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, PropertiesUtil.getInstance().getString("kafka.consumer.key.deserializer")); props.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, PropertiesUtil.getInstance().getString("kafka.consumer.value.deserializer")); return props; } @Bean public KafkaConsumerListener kafkaConsumerListener(){ return new KafkaConsumerListener(); } }

消费消息:

  跟xml配置一样。

 

 

引用:

https://www.cnblogs.com/hsc13-lxy14/p/9211224.html

https://docs.spring.io/spring-kafka/reference/htmlsingle/

posted on 2020-06-01 15:35  曹伟雄  阅读(6523)  评论(0编辑  收藏  举报

导航