Logstash——核心解析插件Grok

 

前言

通常来说,各种日志的格式都比较灵活复杂比如nginx访问日志或者并不纯粹是一行一事件比如java异常堆栈,而且还不一定对大部分开发或者运维那么友好,所以如果可以在最终展现前对日志进行解析并归类到各个字段中,可用性会提升很多。

grok过滤器插件就是用来完成这个功能的。默认可用。

  1. grok的主要选项是match和overwrite,前者用来解析message到相应字段,后者用来重写message,这样原始message就可以被覆盖,对于很多的日志来说,原始的message重复存储一份没有意义。
  2. 虽然Grok过滤器可以用来进行格式化,但是对于多行事件来说,并不适合在filter或者input(multiline codec,如果希望在logstash中处理多行事件,可以参考https://www.elastic.co/guide/en/logstash/current/multiline.html)中处理,因为使用ELK的平台通常日志使用beats input插件,此时在logstash中进行多行事件的处理会导致数据流混乱,所以需要在事件发送到logstash之前就处理好,也就是应该在filebeat中预处理。

grok支持正则表达式.    正则表达式的验证.

 

 

grok 截取过滤

grok正则表达式:(?<temMsg>(.*)(?=Report)/?) 获取Report之前的字符
grok正则表达式:(?<temMsg>(?=Report)(.*)/?) 获取Report之后的字符
grok{
        match => { 
                 #截取<Report>之前的字符作为temMsg字段的值
                "message" => "(?<temMsg>(.*)(?=Report)/?)" 
            }
    }
这个是截取特定的字符集日志,要日志中包含了【Report】关键字
(注:表达式中(?=Report)中的等于【=】符号如果换成【<=】这表示就不包含本身了,例如(?<temMsg>(.*)(?=Report)/?)可以写成(?<temMsg>(.*)(?<=Report)/?)这样输出的结果就不包含Report了,同理下面的一样)
grok正则表达式:(?<temMsg>(?<=report).*?(?=msg)) 截取report和msg之间的值 不包含report和msg本身
grok正则表达式:(?<temMsg>(report).*?(?=msg)) 截取 包含report但不包含msg
grok正则表达式:(?<temMsg>(?<=report).*?(msg))截取  不包含report但包含msg
grok正则表达式:(?<temMsg>(report).*?(msg|request))输出以report开头,以msg或者以request结尾的所有包含头尾信息
grok正则表达式:(?<temMsg>(report).*?(?=(msg|request)))输出以report开头,以msg或者以request结尾的不包含头尾信息
grok{
        match => { 
                 #截取<Report>之后的和<msg>之前的值作为temMsg字段的值
                "message" => "(?<temMsg>(?<=report).*?(?=msg))" 
            }
    }
这个是截取特定的字符集日志,要日志中包含了【report和msg和request】关键字
之间的表达式只要替换一下就可以使用了
(注过个表达式中出现异常,在单个的字符串中可以将小括号【()】去掉,例如:(report).*?(?=msg) 可以写成report.*?(?=msg))
grok正则表达式:(?<MYELF>([\s\S]{500}))
 grok{
       match => {
              #截取日志500个字符 作为MYELF的值
              "message" => "(?<MYELF>([\s\S]{500}))"  
             }
     }
    对有所日志截取500个字符,可以加入if()做为判断条件,根据自身项目来
grok正则表达式:%{LOGLEVEL:level}
grok {
        #这个patterns_dir大家都应该正对 单独写表达式的地方
        #patterns_dir => "/usr/local/nlp/logstash-6.0.1/config/patterns"
                match => [
                        "message","%{LOGLEVEL:level}"         
                ]
        }
  这个比较简单 就不多说了
结合上面的 这个是对level级别的日志做判断 如果日志中含有DEBUG的,就drop掉
if [level] == "DEBUG" {
       drop { }
}
这个其实和上面差不多,加了一个【~】表示对单条的前后日志做匹配
if[message]=~"ASPECT"{
       drop { }
}
这个是说对temMsg赋值的所有的日志从新命名打印message
mutate {
        #重命名字段temMsg为message
        rename => {"temMsg" => "message"} 
}
#logstash过滤器切割
filter {                                      
    if [type] == "simple" {
        mutate{
                 split => ["message","|"]     #按 | 进行split切割message
                        add_field =>   {
                                "requestId" => "%{[message][0]}"
                        }
                        add_field =>   {
                                "timeCost" => "%{[message][1]}"
                        }
                        add_field =>   {
                                "responseStatus" => "%{[message][2]}"
                        }
                        add_field =>   {
                                "channelCode" => "%{[message][3]}"
                        }
                        add_field =>   {
                                "transCode" => "%{[message][4]}"
                        }
        }
        mutate {
            convert => ["timeCost", "integer"]  #修改timeCost字段类型为整型
        }
    } else if [type] == "detail" {
        grok{
            match => {             
                #将message里面 TJParam后面的内容,分隔并新增为ES字段和值
                "message" => ".*TJParam %{PROG:requestId} %{PROG:channelCode} %{PROG:transCode}"
            }
        }
        grok{
            match => { 
                 #截取TJParam之前的字符作为temMsg字段的值
                "message" => "(?<temMsg>(.*)(?=TJParam)/?)" 
                #删除字段message
                remove_field => ["message"]             
            }
        }
        mutate {
             #重命名字段temMsg为message
            rename => {"temMsg" => "message"}            
        }
    }
}

过滤截取完整例子:

input {
    redis {
        data_type => "list"
        host => "localhost1"
        port => "5100"
        key => "nlp_log_file"
        db => 0                                         
        threads => 1                                    #线程数量
        codec => "json"
    }
    redis {
        data_type => "list"
        host => "localhost2"
        port => "5101"
        key => "nlp_log_file"
        db => 0                                     
        threads => 1                                    #线程数量
        codec => "json"
    }
}

filter {
       grok {
        #patterns_dir => "/usr/local/nlp/logstash-6.0.1/config/patterns"
                match => [
                        "message","%{LOGLEVEL:level}"         
                ]
        }
    grok{
        match => { 
                #截取<ReportPdf>之前的字符作为temMsg字段的值
                "message" => "(?<temMsg>(.*)(?=<ReportPdf>)/?)"  
            }
    }
    mutate {
         #重命名字段temMsg为message
        rename => {"temMsg" => "message"}            
    }
        if [level] == "DEBUG" {
                drop { }
        }
        if[message]=~"ASPECT"{
                drop { }
        }
     #获取日志文件带RAWT关键字的
    if[message]=~"[RAW]"{   
             grok{
                match => {
                         #截取带RAW关键字的日志500个字符 作为MYELF的值
                        "message" => "(?<MYELF>([\s\S]{500}))"  
                        }
                }
                 mutate {
                rename => {"MYELF" => "message"} #重命名字段MYELF为message
                 }
        }
}

output {
    elasticsearch {
        hosts => ["localhost:9200"]
        index => "logstash-%{+YYYY.MM.dd}"  
        action => "index"
        template_overwrite => true
        #user => "elastic"
         #password => "admins-1"
    }
    stdout{codec => dots}
}

 

根据不同情况进行不同的匹配原则

filter{
    if "start" in [message]{     --message就是指原始消息
        grok{
            match => xxxxxxxxx
        }
    }else if "complete" in [message]{
        grok{
            xxxxxxxxxx
        }
    }else{
        grok{
            xxxxxxx
        }
    }
}

 

多项匹配

filter {
    grok {
         match => [
            "message" , "%{DATA:hostname}\|%{DATA:tag}\|%{DATA:types}\|%{DATA:uid}\|%{GREEDYDATA:msg}",
            "message" , "%{DATA:hostname}\|%{DATA:tag}\|%{GREEDYDATA:msg}"
         ]
        remove_field => ['type','_id','input_type','tags','message','beat','offset']
    }
}

 

正则匹配

太多使用DATA和GREEDYDAYA会导致性能cpu负载严重。建议多使用正则匹配,或者ruby代码块。

filter {
     grok {
        match => [
               "message", "(?<hostname>[a-zA-Z0-9._-]+)\|%{DATA:tag}\|%{NUMBER:types}\|(?<uid>[0-9]+)\|%{GREEDYDATA:msg}",
               "message", "(?<hostname>[a-zA-Z0-9._-]+)\|%{DATA:tag}\|%{GREEDYDATA:msg}",
        ]
       remove_field => ['type','_id','input_type','tags','message','beat','offset']
    }
}

 

ruby代码块匹配

太多使用DATA和GREEDYDAYA会导致性能cpu负载严重。建议多使用正则匹配,或者ruby代码块。

filter {
    ruby {
        code =>'
        arr = event["message"].split("|")
        if arr.length == 5
            event["hostname"] = arr[0]
            event["tag"] = arr[1]
            event["types"] = arr[2]
            event["uid"] = arr[3]
            event["msg"] = arr[4]
        elsif arr.length == 3
            event["hostname"] = arr[0]
            event["tag"] = arr[1]
            event["msg"] = arr[2]
        end'
       remove_field => ['type','_id','input_type','tags','message','beat','offset']
    }
}

 

本人完整例子

input {
        kafka {
                bootstrap_servers => "172.xxx.xxx.91:9092,172.16.10.92:9092,172.xxx.xxx.93:9092"
                topics => ["logstash-log"]
                consumer_threads => 1
                decorate_events => true
                codec => json
        }
}

filter {
        if [message]=~"ERROR" {
                # 截取日志级别为ERROR的日志2000个字符作为ERRORMSG的值(因为包含了堆栈信息内容会很长,导致下面[logBegin][logEnd]的正则匹配很慢,然后超时).
                grok {
                        match => {
                                 "message" => "(?<ERRORMSG>([\s\S]{0,2000}))"
                        }
                }
                #重命名字段ERRORMSG为message,给下面的正则使用
                mutate {
                        rename => {"ERRORMSG" => "message"}
                }
        }

        grok {
                match => [
                        "message", "\s*%{TIMESTAMP_ISO8601:logTimestamp} \[%{DATA:threadName}\s*\] \[%{LOGLEVEL:logLevel}\s*\] \[%{DATA:methodName}\s*\]\s+MessageTree=+(?<traceMsg>(\S+)).*",
                        "message", "\s*%{TIMESTAMP_ISO8601:logTimestamp} \[%{DATA:threadName}\s*\] \[%{LOGLEVEL:logLevel}\s*\] \[%{DATA:methodName}\s*\]\s+warningMessage=+(?<warningId>(\S+)).*&+(?<warningMsg>([\s\S]*})).*",
                        "message", "\s*%{TIMESTAMP_ISO8601:logTimestamp} \[%{DATA:threadName}\s*\] \[%{LOGLEVEL:logLevel}\s*\] \[%{DATA:methodName}\s*\]\s*(?<logInfo>([\s\S]*))",
                        "message", "\s*(?<logInfo>([\s\S]*))"
                ]
                remove_tag => ["beats_input_codec_plain_applied"]
                remove_field  => ["message","prospector"]
        }

        date {
                match => ["logTimestamp", "ISO8601"]
                target => "logTimestamp"
        }


        #if [traceId] =~ /\d/ or [warningId] =~ /[0-9a-z_A-Z_]/ {
        #       mutate {
        #               replace => {"logInfo" => "%{message}"}
        #       }
        #}

}

output {
        if [traceMsg] =~ /\S/ {
                kafka {
                        bootstrap_servers => "172.16.xxx.xxx:9092,172.xxx.xxx.92:9092,172.xxx.xxx.93:9092"
                        topic_id => "logstash-trace"
                        retries => 1
                        compression_type => "snappy"
                        codec => plain{
                                format => "%{traceMsg}"
                                charset => "UTF-8"
                        }
                }
        }

        if [warningId] =~ /[0-9a-z_A-Z_]/ {
                kafka {
                        bootstrap_servers => "172.16.xxx.xxx:9092,172.16.xxx.xxx:9092,172.xxx.xxx.93:9092"
                        topic_id => "warning-topic"
                        retries => 1
                        compression_type => "snappy"
                        codec => plain{
                                format => "%{warningMsg}"
                                charset => "UTF-8"
                        }
                }
        }

        if [traceId] =~ /\d/ {
                elasticsearch{
                        hosts => ["10.xxx.xxx.100:9200", "10.xxx.xxx.101:9200", "10.xxx.xxx.102:9200"]
                        index => "%{[fields][product_type]}-logs-transaction-%{+YYYY-MM}"
                        manage_template => false
                        template_name => "business_logs_template"
                }

                #stdout {
                #     codec => rubydebug
                #}
        }

        #stdout {
        #     codec => rubydebug
        #}

        if "sas" in [tags]{
                elasticsearch{
                        hosts => ["10.xxx.xxx.100:9200", "10.xxx.xxx.101:9200", "10.xxx.xxx.102:9200"]
                        index => "%{[fields][product_type]}-logs-%{+YYYY-MM-dd}"
                        manage_template => false
                        template_name => "business_logs_template"
                }
                #stdout {
                #       codec => rubydebug
                #}
        }
}

 

 

参考:

https://www.cnblogs.com/JetpropelledSnake/p/9893560.html

https://blog.csdn.net/cai750415222/article/details/86614854

https://doc.yonyoucloud.com/doc/logstash-best-practice-cn/index.html  —— Logstash 最佳实践

posted on 2020-03-27 10:22  曹伟雄  阅读(3282)  评论(0编辑  收藏  举报

导航