摘要:
1、多层感知机 原理: 多次重复线性回归的加权求和过程(中间的计算结果称为隐单元,隐单元构成隐层),计算完每个隐单元的加权求和之后,对结果应用一个非线性函数。再将这个函数结果用于加权求和得出y 矫正非线性(relu) 正切双曲线(tanh) sklearn.neural_network.MLPCla 阅读全文
摘要:
核支持向量机(SVM)是可以推广到更复杂模型的扩展,这些模型无法被输入空间的超平面定义。 SVM可以同时用于分类和回归 1、线性模型与非线性特征 线性模型在低维空间中可能非常受限,因为线和平面的灵活性有限。有一种方法可以让线性模型变得更加灵活,就是添加更多的特征(添加输入特征的交互项或多项式)。 � 阅读全文
摘要:
决策树是广泛用于分类和回归任务的模型。 它从一层层的if/else问题(尽可能少的问题)中进行学习,并得出结论 1、构造决策树 1)two_moons数据集 这是个二分类数据集(每个类别50个数据点),样本点在坐标图中的分布像两个半月牙,因此叫做two_moons 2)学习决策树,就是学习一系列的i 阅读全文
摘要:
集成(ensemble)是合并多个机器学习模型来构建更强大模型的方法。 已证明有两种集成模型对大量分类和回归的数据集都是有效的,二者都以决策树为基础,分别是随机森林(random forest)和梯度提升决策树(gradient boosted decision tree)。 1、随机森林 决策树的 阅读全文
摘要:
朴素贝叶斯分类器是一种与线性模型非常相类似的一种分类器。 它的训练速度比线性模型更快,但是泛化能力要强。 主要思想:通过独立查看每个特征来学习参数,并从每个特征中收集简单的类别统计数据 scikit-learn实现了三种朴素贝叶斯分类器:1、GaussianNB分类器(高斯)、2、Bernoulli 阅读全文