摘要:
1、什么是凝聚聚类 凝聚聚类(agglomerative clustering)指的是许多基于相同原则构建的聚类算法, 这一原则是: 算法首先声明每个点是自己的簇,然后合并两个最相似的簇,直到满足某种停止准则为止。 scikit-learn 中实现的停止准则是簇的个数,因此相似的簇被合并,直到仅剩下 阅读全文
摘要:
1、什么是K均值聚类 k均值聚类是最简单也是最常用的聚类算法之一。它试图找到代表数据特定区域的簇中心(Cluster Center) K-means算法过程 1.随机布置K个特征空间内的点作为初始的聚类中心 2.对于根据每个数据的特征向量,从K个聚类中心中寻找距离最近的一个,并且把该数据标记为从属这 阅读全文