摘要:
特征和目标之间存在非线性关系,建模变得很困难 ⭐log和exp函数可以帮助调节数据的相对比例,改进线性模型或者神经网络的学习效果 ⭐大部分模型在每个特征遵循高斯分布时表现很好 ⭐在处理整数计数数据时,这种log,exp变换非常有用 1、模拟一些数据 模拟钟形分布的数据 from sklearn.li 阅读全文
摘要:
⭐想要丰富特征表示,可以通过添加原始数据的交互特征和多项式特征,尤其是对于线性模型而言。 如果想向分箱数据(4.2的内容)上的线性模型添加斜率:1、加入原始特征(图中的X轴),2、添加交互特征或乘积特征 1、加入原始特征 # 向分箱数据中加入原始特征 X,y = mglearn.datasets.m 阅读全文
摘要:
1、线性模型与决策树在wave数据集上的表现 ⭐数据表示的最佳方法不仅取决于数据的语义,还取决于所使用的模型种类。 线性模型与基于树的模型(决策树、梯度提升树、随机森林)很常用的模型,但他们在处理不同特征表示时具有非常不同的性质。 ⭐下面是线性回归和决策树在make_wave数据集中的对比 impo 阅读全文