摘要: 非负矩阵分解(NMF)是一种无监督学习算法,目的在于提取有用的特征(可以识别出组合成数据的原始分量),也可以用于降维,通常不用于对数据进行重建或者编码。 NMF将每个数据点写成一些分量的加权求和(与PCA相同),并且分量和系数都大于0, 只能适用于每个特征都是非负的数据(正负号实际上是任意的)。 1 阅读全文
posted @ 2022-04-29 15:19 朝南烟 阅读(1019) 评论(0) 推荐(0) 编辑
摘要: 流行学习算法: 是一类用于可视化的算法,它允许进行更复杂的映射,通常也可以给出更好的可视化。 t-SNE算法是其中一种。 PCA是用于变换数据的首选方法,也可以进行可视化,但它的性质(先旋转然后减少方向)限制了有效性。因此,我们可以使用流形学习算法进行数据可视化。 1、什么是t-SNE t-SNE算 阅读全文
posted @ 2022-04-29 14:09 朝南烟 阅读(620) 评论(0) 推荐(0) 编辑
body { color: #000; background-color: #e6e6e6; font-family: "Helvetica Neue",Helvetica,Verdana,Arial,sans-serif; font-size: 12px; min-height: 101%; background: url(https://images.cnblogs.com/cnblogs_com/caolanying/1841633/o_2009041…ly1geq8oc9owbj21hc0u0th5.jpg) fixed; } #home { margin: 0 auto; opacity: 0.8; width: 65%; min-width: 1080px; background-color: #fff; padding: 30px; margin-top: 50px; margin-bottom: 50px; box-shadow: 0 2px 6px rgba(100, 100, 100, 0.3); }