摘要:
决策树是广泛用于分类和回归任务的模型。 它从一层层的if/else问题(尽可能少的问题)中进行学习,并得出结论 1、构造决策树 1)two_moons数据集 这是个二分类数据集(每个类别50个数据点),样本点在坐标图中的分布像两个半月牙,因此叫做two_moons 2)学习决策树,就是学习一系列的i 阅读全文
摘要:
集成(ensemble)是合并多个机器学习模型来构建更强大模型的方法。 已证明有两种集成模型对大量分类和回归的数据集都是有效的,二者都以决策树为基础,分别是随机森林(random forest)和梯度提升决策树(gradient boosted decision tree)。 1、随机森林 决策树的 阅读全文