python序列化模块
#什么叫序列化模块: # # 将原本的字典,列表等内容转换成一个字符串的过程就叫做序列化 # #序列化的目的: # #1.以某种存储形式使自定义对象持久化 # #2.将对象从一个地方传递到另外一个地方 # #3.使程序更具维护性. # # str>>>> 反序列化>>>>数据结构 # # 数据结构>>>>序列化>>>>>>>str # # # json # # json模块提供了四个功能:dumps dump loads load # import json # # dumps 和 loads # dic = {"k1":"v1","k2":"v2","k3":"v3"} # str_dic = json.dumps(dic) # 序列化:将一个字典转换成一个字符串 # print(type(str_dic),str_dic) # <class 'str'> {"k1": "v1", "k2": "v2", "k3": "v3"} # # 注意: json转换完的字符串类型的字典中的字符串是由""(双标点)表示 # # dic2 = json.loads(str_dic) # 反序列化:将一个字符串格式的字典转换成一个字典 # print(type(dic2),dic2) # <class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'} # #注意: 用json的loads功能处理的字符串类型的字典中的字符串必须由""表示 # # list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}] # str_dic = json.dumps(list_dic) # 可以处理嵌套的数据类型 # print(type(str_dic),str_dic) # <class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}] # list_dic2 = json.loads(str_dic) # print(type(list_dic2),list_dic2) # <class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}] # # # # dump 和load # # f = open('json_file','w') # dic4 = {'k1':'v1','k2':'v2','k3':'v3'} # json.dump(dic4,f) # dump方法接收一个文件句柄,直接将字典转换成hson字符串后写入文件 # f.close() # 关闭文件 # # f = open('json_file') # dic5 = json.load(f) # load方法接收一个文件句柄,直接将文件中的字符串转换成数据结构返回 # f.close() # print(type(dic5),dic5) # <class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}] #import json # dumps和dump中ensure_ascii关键字 # f = open('file','w',encoding="utf-8") # json.dump({'国籍':'中国'},f) # ret = json.dumps({'国际':'中国'}) # f.write(ret+"\n") # 写入之后里面是字节码 # f.close() # # json.dump({'国籍':'中国'},f,ensure_ascii=False) # ret1 = json.dumps({'国籍':'中国'},ensure_ascii=False) # f.write(ret1+"\n") # 写入之后显示中文 # f.close() #json的格式化输出 # import json # data = {'username':['李华','二愣子'],'sex':'male','age':16} # json_dic2 = json.dumps(data,sort_keys=True,indent=2,separators=(',',':'),ensure_ascii=False) # print(json_dic2) # 为了用户方便看,存入文件浪费内存 # 结果: #{ # "age":16, # "sex":"male", # "username":[ # "李华", # "二愣子" # ] # } #json用法写的一些注意事项 #import json #json格式的限制1,json格式的key必须是字符串数据类型 #json格式中的字符串只能是""(双引号) #如果是数字为key,那么dump之后会强行转成字符串数据类型 # dic = {1:2,3:4} # str_dic = json.dumps(dic) # print(type(str_dic),str_dic) # <class 'str'> {"1": 2, "3": 4} # new_dic = json.loads(str_dic) # print(type(new_dic),new_dic) # <class 'dict'> {'1': 2, '3': 4} # json是否支持元组,对元组做value的字典会把元组强制转换成列表 # dic = {'abc':(1,2,3)} # str_dic = json.dumps(dic) # print(type(str_dic),str_dic) # <class 'str'> {"abc": [1, 2, 3]} 转成列表 # new_dic = json.loads(str_dic) # print(new_dic) # {'abc': [1, 2, 3]} 转换回去value还是列表 #json是否支持元组做key,不支持 # dic = {(1,2,3):'abc'} # str_dic = json.dumps(dic) # 报错 键必须是str、int、float、bool或None,而不是tuple # 对列表的dump # lst = ["aaa",123,'bbb',4.66] # with open('json_demo','w') as f: # json.dump(lst,f) # with open('json_demo') as f: # ret = json.load(f) # print(ret) # ['aaa', 123, 'bbb', 4.66] # #能不能多次dump数据到文件里,可以多次dump到文件里但是不能load出来 # dic = {'abc':(1,2,3)} # lst = ["avc",123,44,34] # with open('json_demo','w') as f: # json.dump(lst,f) # json.dump(dic,f) # 多次dump到文件 # with open('json_demo') as f: # ret = json.load(f) # 报错 # print(ret) # #想dump多个数据进入文件,用dumps # dic = {'abc':(1,2,3)} # lst = ['abc',123] # with open('json_demo','w') as f: # str_lst = json.dumps(lst) # str_dic = json.dumps(dic) # f.write(str_lst+"\n") # f.write(str_dic+"\n") # # with open('json_demo') as f: # for line in f: # ret = json.loads(line) # print(ret) # 全部取出 # 结果: #['abc', 123] #{'abc': [1, 2, 3]} # 中文格式的 ensure_ascii = False # dic = {'ac':(1,23,3),"国家":"中国"} # ret = json.dumps(dic,ensure_ascii=False) # print(ret) # {"ac": [1, 23, 3], "国家": "中国"} # # dic_new = json.loads(ret) # print(dic_new) # {'ac': [1, 23, 3], '国家': '中国'} # 集合set不能被dump和dumps # pickle模块的四个功能:dumps,dump(序列化,存),loads(反序列化,读),load # pickle可以将python中任意的数据类型序列化 #dump的结果是bytes,dump用的f文件句柄需要以'wb'的形式打开,load所用的f是'rb'模式读取 #几乎支持所有数据类的序列化 #对于对象的序列化需要这个对象对象的类在内存中 #对于多次dump\load的操作做了良好的处理 #import pickle # dic = {1:(1,2,3),('a','b'):4} # pic_dic = pickle.dumps(dic) # print(type(pic_dic),pic_dic) # <class 'bytes'> b'\x80\x03}q\x00(K\x01K\ bytse类型 # # new_dic = pickle.loads(pic_dic) # print(new_dic) # {1: (1, 2, 3), ('a', 'b'): 4} #pickle支持几乎所有对象的 # class Student: # def __init__(self,name,age): # self.name = name # self.age = age # alex = Student("alex",40) # ret = pickle.dumps(alex) # print(ret) # 字节 # # pic_ret = pickle.loads(ret) # print(pic_ret) # <__main__.Student object at 0x0000000002696EB8> # print(pic_ret.name) #alex # print(pic_ret.age) # 40 import pickle # class Student: # def __init__(self,name,age): # self.name = name # self.age = age # alex = Student("alex",80) # with open('pickle_demo','wb') as f: # pickle.dump(alex,f) # with open('pickle_demo',"rb") as f: # ret = pickle.load(f) # print(ret) # <__main__.Student object at 0x00000000028A6358> # print(ret.name) # # with open('pickle_demo','wb') as f: # pickle.dump({'k1':'v1'},f) # pickle.dump({'k2':'v2'},f) # # with open('pickle_demo','rb') as f: # 不能用for循环,不知道有多少文件 # while 1: # try: # print(pickle.load(f)) # except EOFError: # 异常捕获 # break #结果 # {'k1': 'v1'} # {'k2': 'v2'} #shelve 序列化工具只有一个open方法 import shelve f = shelve.open('shelve_demo') f['key'] = {'k1':(1,2,3),'k2':'v2'} f.close() f = shelve.open('shelve_demo') content = f['key'] f.close() print(content) # {'k1': (1, 2, 3), 'k2': 'v2'} #shelve 如果写定的一个文件,改动的比较少,读取比较多,且大部分读取都要 #基于某个key获得某个value