Scrapy日志等级以及请求传参

 

日志等级

- 日志信息:   使用命令:scrapy crawl 爬虫文件 运行程序时,在终端输出的就是日志信息;

 

- 日志信息的种类:

  - ERROR:一般错误;

  - WARNING:警告;

  - INFO:一般的信息;

  - DEBUG: 调试信息;

 

- 设置日志信息指定输出:

  - 在settings配置文件中添加:

    - LOG_LEVEL = ‘指定日志信息种类’即可。

    - LOG_FILE = 'log.txt'则表示将日志信息写入到指定文件中进行存储。

 

请求传参

- 在某些情况下,我们爬取的数据不在同一个页面中,例如,我们爬取一个电影网站,电影的名称,评分在一级页面,而要爬取的其他电影详情在其二级子页面中。这时我们就需要用到请求传参。

 

- 通过 在scrapy.Request()中添加 meta参数 进行传参;

scrapy.Request()

 

- 案例展示:爬取www.id97.com电影网,将一级页面中的电影名称,类型,评分一级二级页面中的上映时间,导演,片长进行爬取。

  - 爬虫文件

# -*- coding: utf-8 -*-
import scrapy
from moviePro.items import MovieproItem

class MovieSpider(scrapy.Spider):
    name = 'movie'
    allowed_domains = ['www.id97.com']
    start_urls = ['http://www.id97.com/']

    def parse(self, response):
        div_list = response.xpath('//div[@class="col-xs-1-5 movie-item"]')

        for div in div_list:
            item = MovieproItem()
            item['name'] = div.xpath('.//h1/a/text()').extract_first()
            item['score'] = div.xpath('.//h1/em/text()').extract_first()
#xpath(string(.))表示提取当前节点下所有子节点中的数据值(.)表示当前节点 item['kind'] = div.xpath('.//div[@class="otherinfo"]').xpath('string(.)').extract_first() item['detail_url'] = div.xpath('./div/a/@href').extract_first()
#请求二级详情页面,解析二级页面中的相应内容,通过meta参数进行Request的数据传递 yield scrapy.Request(url=item['detail_url'],callback=self.parse_detail,meta={'item':item}) def parse_detail(self,response): #通过response获取item item = response.meta['item']
item[
'actor'] = response.xpath('//div[@class="row"]//table/tr[1]/a/text()').extract_first() item['time'] = response.xpath('//div[@class="row"]//table/tr[7]/td[2]/text()').extract_first() item['long'] = response.xpath('//div[@class="row"]//table/tr[8]/td[2]/text()').extract_first()
#提交item到管道 yield item

 

   - items文件:

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html

import scrapy


class MovieproItem(scrapy.Item):
    # define the fields for your item here like:
    name = scrapy.Field()
    score = scrapy.Field()
    time = scrapy.Field()
    long = scrapy.Field()
    actor = scrapy.Field()
    kind = scrapy.Field()
    detail_url = scrapy.Field()
 

 

  - 管道文件:

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html

import json
class MovieproPipeline(object):
    def __init__(self):
        self.fp = open('data.txt','w')
    def process_item(self, item, spider):
        dic = dict(item)
        print(dic)
        json.dump(dic,self.fp,ensure_ascii=False)
        return item
    def close_spider(self,spider):
        self.fp.close()

 

提高scrapy的爬取效率

- 增加并发量:

  - 默认最大的并发量为32,可以通过设置settings文件修改

    CONCURRENT_REQUESTS = 100

    - 将并发改为100

 

- 降低日志等级:

  - 在运行scrapy时,会有大量日志信息的输出,为了减少CPU的使用率。可以设置log输出信息为INFO或者ERROR即可。修改settings.py

    LOG_LEVEL = 'INFO'

 

- 禁止cookie:

  - 如果不是真的需要cookie,则在scrapy爬取数据时可以进制cookie从而减少CPU的使用率,提升爬取效率。修改settings.py

    COOKIES_ENABLED = False

 

- 禁止重试:

  - 对失败的HTTP进行重新请求(重试)会减慢爬取速度,因此可以禁止重试。修改settings.py

    RETRY_ENABLED = False

 

- 减少下载超时:

  - 如果对一个非常慢的链接进行爬取,减少下载超时可以能让卡住的链接快速被放弃,从而提升效率。修改settings.py

    DOWNLOAD_TIMEOUT = 10 

 

- 测试案例:

# -*- coding: utf-8 -*-
import scrapy
from ..items import PicproItem
# 提升spider的爬取效率测试
# 爬取4k高清壁纸网站的图片


class PicSpider(scrapy.Spider):
    name = 'pic'
    # allowed_domains = ['www.pic.com']
    start_urls = ['http://pic.netbian.com/']

    def parse(self, response):
        li_list = response.xpath('//div[@class="slist"]/ul/li')
        print(li_list)
        for li in li_list:
            img_url ="http://pic.netbian.com/"+li.xpath('./a/span/img/@src').extract_first()
            # print(66,img_url)
            title = li.xpath('./a/span/img/@alt').extract_first()
            print("title:", title)
            item = PicproItem()
            item["name"] = title

            yield scrapy.Request(url=img_url, callback =self.getImgData,meta={"item":item})


    def getImgData(self, response):
        item = response.meta['item']
        # 取二进制数据在body中
        item['img_data'] = response.body

        yield item

import os
class PicproPipeline(object):
    def open_spider(self,spider):
        if not os.path.exists('picLib'):
            os.mkdir('./picLib')
    def process_item(self, item, spider):
        imgPath = './picLib/'+item['name']+".jpg"
        with open(imgPath,'wb') as fp:
            fp.write(item['img_data'])
            print(imgPath+'下载成功!')
        return item

配置文件:

USER_AGENT = 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36'


# Obey robots.txt rules
ROBOTSTXT_OBEY = False

ITEM_PIPELINES = {
   'picPro.pipelines.PicproPipeline': 300,
}


# 打印具体错误信息
LOG_LEVEL ="ERROR"

#提升爬取效率

CONCURRENT_REQUESTS = 10
COOKIES_ENABLED = False
RETRY_ENABLED = False
DOWNLOAD_TIMEOUT = 5

 

posted @ 2019-01-10 19:46  Hear7  阅读(242)  评论(0编辑  收藏  举报