生产者与消费者的阻塞队列实现以及无锁缓存框架的实现

阻塞队列的实现

package PandC;

import java.text.MessageFormat;
import java.util.Random;
import java.util.concurrent.BlockingQueue;

public class Consumer implements Runnable{
    private BlockingQueue<PCData> queue;
    private static final int SLEEPTIME = 1000;
    @Override
    public void run() {
        System.out.println("start Consumer id=" + Thread.currentThread().getId());
        Random r = new Random();
        try{
            while(true){
                PCData data = queue.take();
                if(null != data){
                    int re = data.getData() * data.getData();
                    System.out.println(MessageFormat.format("{0} * {1} = {2}", data.getData(), data.getData(), re));
                    Thread.sleep(r.nextInt(SLEEPTIME));
                }
            }
        }catch(InterruptedException e){
            e.printStackTrace();
            Thread.currentThread().interrupt();
        }
    }
    public Consumer(BlockingQueue<PCData> queue){
        this.queue = queue;
    }
    
}
package PandC;


public class PCData {
    private final int intData;
    public PCData(int d){
        intData = d;
    }
    public PCData(String d){
        intData = Integer.valueOf(d);
    }
    @Override
    public String toString() {
        return "data:" + intData;
    }
    public int getData(){
        return intData;
    }
}
package PandC;

import java.util.Random;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicInteger;

public class Producer implements Runnable {
    private volatile boolean isRunning = true;
    private BlockingQueue<PCData> queue;
    private static AtomicInteger count = new AtomicInteger();
    private static final int SLEEPTIME = 1000;
    public Producer(BlockingQueue<PCData> queue){
        this.queue = queue;
    }
    @Override
    public void run() {
        PCData data = null;
        Random r = new Random();
        System.out.println("start producer id=" + Thread.currentThread().getId());
        try{
            while(isRunning){
                Thread.sleep(r.nextInt(SLEEPTIME));
                data = new PCData(count.incrementAndGet());
                System.out.println(data + "is put into queue");
                if(!queue.offer(data, 2, TimeUnit.SECONDS)){
                    System.err.println("fail to put data:" + data);
                }
            }
        }catch(InterruptedException e){
            e.printStackTrace();
            Thread.currentThread().interrupt();
        }
    }
    public void stop(){
        isRunning = false;
    }
}
package PandC;

import java.awt.image.VolatileImage;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.LinkedBlockingQueue;

public class Main {
    public static volatile BlockingQueue<PCData> queue = new LinkedBlockingQueue<PCData>(10);
    public static void main(String[] args) throws InterruptedException {
        Producer producer1 = new Producer(queue);
        Producer producer2 = new Producer(queue);
        Producer producer3 = new Producer(queue);
        Consumer consumer1 = new Consumer(queue);
        Consumer consumer2 = new Consumer(queue);
        Consumer consumer3 = new Consumer(queue);
        ExecutorService service = Executors.newCachedThreadPool();
        service.execute(producer1);
        service.execute(producer2);
        service.execute(producer3);
        service.execute(consumer1);
        service.execute(consumer2);
        service.execute(consumer3);
        Thread.sleep(10 * 1000);
        producer1.stop();
        producer2.stop();
        producer3.stop();
        Thread.sleep(3000);
        service.shutdown();
    }
}

但是阻塞队列不是一个高性能的体现,完全使用锁和阻塞实现线程之间的同步,在高并发的场合它的性能并不卓越。他仅仅是方便数据的共享。

concurrentLinkedQueue是一个高性能的队列,大量使用无锁的CAS操作,会获得客观的性能提升(不过CAS不是在所有的情况下都比悲观锁的性能好,比如在线程线程冲突严重的情况下,CAS会不断的自旋,更加耗费CPU)

concurrentLinkedQueue实现生产者与消费者模式:

package concurrentLinkedQueue;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;

public class ConcurrentLinkedQueueTest {
    private static ConcurrentLinkedQueue<Integer> queue = new ConcurrentLinkedQueue<Integer>();
    private static int count = 2; // 线程个数
    //CountDownLatch,一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待。
    private static CountDownLatch latch = new CountDownLatch(count);

    public static void main(String[] args) throws InterruptedException {
        long timeStart = System.currentTimeMillis();
        ExecutorService es = Executors.newFixedThreadPool(4);
        ConcurrentLinkedQueueTest.offer();
        for (int i = 0; i < count; i++) {
            es.submit(new Poll());
        }
        latch.await(); //使得主线程(main)阻塞直到latch.countDown()为零才继续执行
        System.out.println("cost time " + (System.currentTimeMillis() - timeStart) + "ms");
        es.shutdown();
    }
    
    /**
     * 生产
     */
    public static void offer() {
        for (int i = 0; i < 100000; i++) {
            queue.offer(i);
        }
    }
    /**
     * 消费
     */
    static class Poll implements Runnable {
        public void run() {
            // while (queue.size()>0) {
            while (!queue.isEmpty()) {
                System.out.println(queue.poll());
            }
            latch.countDown();
        }
    }
}

LMAX公司开发了无所内存并发组件:Disruptor。也是采用CAS操作。用Disruptor实现生产者与消费者是最好的方式。Disruptor使用了环形队列来代替普通队列,只需要提供当前位置,利用这个指针可以进行入队操作和出队操作。带来的代价是总大小必须事先指定,可以做到完全的内存复用(我们可以自己实现阻塞队列,并且不指定大小)。Disruptor要求必须将数组的大小设置为2的整数次方。加快定位实际元素位置得速度。

Disruptor甚至提供了不同的策略来提高消费者的响应时间,以及解决CPU的伪共享问题。将系统的吞吐量提升到极致。

用Disruptor实现生产者与消费者模式:

package disruptor;

import com.lmax.disruptor.WorkHandler;

public class Consumer implements WorkHandler<PCData> {

    @Override
    public void onEvent(PCData event) throws Exception {
        System.out.println(Thread.currentThread().getId() + ":Event: --"
                 + event.get() * event.get() + "--");
    }
    
}
package disruptor;

public class PCData {
    private long value;
    public void set(long value){
        this.value = value;
    }
    public long get(){
        return value;
    }
}
package disruptor;

import com.lmax.disruptor.EventFactory;

public class PCDataFactory implements EventFactory<PCData> {

    @Override
    public PCData newInstance() {
        // TODO Auto-generated method stub
        return new PCData();
    }

}
package disruptor;

import java.nio.ByteBuffer;

import com.lmax.disruptor.RingBuffer;

public class Producer {
    private final RingBuffer<PCData> ringBuffer;
    public Producer(RingBuffer<PCData> ringBuffer){
        this.ringBuffer = ringBuffer;
    }
    public void pushData(ByteBuffer bb){
        long sequence = ringBuffer.next();
        try{
            PCData event = ringBuffer.get(sequence);
            event.set(bb.getLong(0));
        }finally{
            ringBuffer.publish(sequence);
        }
    }
}
package disruptor;

import java.nio.ByteBuffer;
import java.util.concurrent.Executor;
import java.util.concurrent.Executors;

import com.lmax.disruptor.BlockingWaitStrategy;
import com.lmax.disruptor.RingBuffer;
import com.lmax.disruptor.dsl.Disruptor;
import com.lmax.disruptor.dsl.ProducerType;

public class Main {
    public static void main(String[] args) throws InterruptedException {
        Executor executor = Executors.newCachedThreadPool();
        PCDataFactory factory = new PCDataFactory();
        int bufferSize = 1024;
        Disruptor<PCData> disruptor = new Disruptor<PCData>(factory,
                bufferSize, executor, ProducerType.MULTI,
                new BlockingWaitStrategy());
        disruptor.handleEventsWithWorkerPool(new Consumer(), new Consumer(),
                new Consumer(), new Consumer());
        disruptor.start();
        RingBuffer<PCData> ringBuffer = disruptor.getRingBuffer();
        Producer producer = new Producer(ringBuffer);
        ByteBuffer bb = ByteBuffer.allocate(8);
        for(long l = 0;true;l ++){
            bb.putLong(0, l);
            producer.pushData(bb);
            Thread.sleep(100);
            System.out.println("add data " + l);
        }
    }
}

 

posted @ 2017-05-11 16:26  起个po名真费劲  阅读(1080)  评论(0编辑  收藏  举报