【并发编程】JAVA CAS(Compare And Swap)原理

1. CAS简介

  在计算机科学中,比较和交换(Compare And Swap)是用于实现多线程同步的原子指令。它将内存位置的内容与给定值进行比较,只有在相同的情况下,将该内存位置的内容修改为新的给定值。这是作为单个原子操作完成的。
  原子性保证新值基于最新信息计算;如果该值在同一时间被另一个线程更新,则写入将失败。操作结果必须说明是否进行替换;这可以通过一个简单的布尔响应(这个变体通常称为比较和设置),或通过返回从内存位置读取的值来完成。
  查看JUC(java.util.concurrent)下的atomic包:

2. CAS在Java中的应用

  以AtomicInteger为例:

package java.util.concurrent.atomic;
import java.util.function.IntUnaryOperator;
import java.util.function.IntBinaryOperator;
import sun.misc.Unsafe;

/**
 * An {@code int} value that may be updated atomically.  See the
 * {@link java.util.concurrent.atomic} package specification for
 * description of the properties of atomic variables. An
 * {@code AtomicInteger} is used in applications such as atomically
 * incremented counters, and cannot be used as a replacement for an
 * {@link java.lang.Integer}. However, this class does extend
 * {@code Number} to allow uniform access by tools and utilities that
 * deal with numerically-based classes.
 *
 * @since 1.5
 * @author Doug Lea
*/
public class AtomicInteger extends Number implements java.io.Serializable {
    private static final long serialVersionUID = 6214790243416807050L;

    // setup to use Unsafe.compareAndSwapInt for updates
    private static final Unsafe unsafe = Unsafe.getUnsafe();
    private static final long valueOffset;

    static {
        try {
            valueOffset = unsafe.objectFieldOffset
                (AtomicInteger.class.getDeclaredField("value"));
        } catch (Exception ex) { throw new Error(ex); }
    }

    private volatile int value;

    /**
     * Creates a new AtomicInteger with the given initial value.
     *
     * @param initialValue the initial value
     */
    public AtomicInteger(int initialValue) {
        value = initialValue;
    }

    /**
     * Creates a new AtomicInteger with initial value {@code 0}.
     */
    public AtomicInteger() {
    }

    /**
     * Gets the current value.
     *
     * @return the current value
     */
    public final int get() {
        return value;
    }

    /**
     * Sets to the given value.
     *
     * @param newValue the new value
     */
    public final void set(int newValue) {
        value = newValue;
    }

    /**
     * Eventually sets to the given value.
     *
     * @param newValue the new value
     * @since 1.6
     */
    public final void lazySet(int newValue) {
        unsafe.putOrderedInt(this, valueOffset, newValue);
    }

    /**
     * Atomically sets to the given value and returns the old value.
     *
     * @param newValue the new value
     * @return the previous value
     */
    public final int getAndSet(int newValue) {
        return unsafe.getAndSetInt(this, valueOffset, newValue);
    }

    /**
     * Atomically sets the value to the given updated value
     * if the current value {@code ==} the expected value.
     *
     * @param expect the expected value
     * @param update the new value
     * @return {@code true} if successful. False return indicates that
     * the actual value was not equal to the expected value.
     */
    public final boolean compareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

    /**
     * Atomically sets the value to the given updated value
     * if the current value {@code ==} the expected value.
     *
     * <p><a href="package-summary.html#weakCompareAndSet">May fail
     * spuriously and does not provide ordering guarantees</a>, so is
     * only rarely an appropriate alternative to {@code compareAndSet}.
     *
     * @param expect the expected value
     * @param update the new value
     * @return {@code true} if successful
     */
    public final boolean weakCompareAndSet(int expect, int update) {
        return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
    }

    /**
     * Atomically increments by one the current value.
     *
     * @return the previous value
     */
    public final int getAndIncrement() {
        return unsafe.getAndAddInt(this, valueOffset, 1);
    }

    /**
     * Atomically decrements by one the current value.
     *
     * @return the previous value
     */
    public final int getAndDecrement() {
        return unsafe.getAndAddInt(this, valueOffset, -1);
    }

    /**
     * Atomically adds the given value to the current value.
     *
     * @param delta the value to add
     * @return the previous value
     */
    public final int getAndAdd(int delta) {
        return unsafe.getAndAddInt(this, valueOffset, delta);
    }

    /**
     * Atomically increments by one the current value.
     *
     * @return the updated value
     */
    public final int incrementAndGet() {
        return unsafe.getAndAddInt(this, valueOffset, 1) + 1;
    }

    /**
     * Atomically decrements by one the current value.
     *
     * @return the updated value
     */
    public final int decrementAndGet() {
        return unsafe.getAndAddInt(this, valueOffset, -1) - 1;
    }

    /**
     * Atomically adds the given value to the current value.
     *
     * @param delta the value to add
     * @return the updated value
     */
    public final int addAndGet(int delta) {
        return unsafe.getAndAddInt(this, valueOffset, delta) + delta;
    }

    /**
     * Atomically updates the current value with the results of
     * applying the given function, returning the previous value. The
     * function should be side-effect-free, since it may be re-applied
     * when attempted updates fail due to contention among threads.
     *
     * @param updateFunction a side-effect-free function
     * @return the previous value
     * @since 1.8
     */
    public final int getAndUpdate(IntUnaryOperator updateFunction) {
        int prev, next;
        do {
            prev = get();
            next = updateFunction.applyAsInt(prev);
        } while (!compareAndSet(prev, next));
        return prev;
    }

    /**
     * Atomically updates the current value with the results of
     * applying the given function, returning the updated value. The
     * function should be side-effect-free, since it may be re-applied
     * when attempted updates fail due to contention among threads.
     *
     * @param updateFunction a side-effect-free function
     * @return the updated value
     * @since 1.8
     */
    public final int updateAndGet(IntUnaryOperator updateFunction) {
        int prev, next;
        do {
            prev = get();
            next = updateFunction.applyAsInt(prev);
        } while (!compareAndSet(prev, next));
        return next;
    }

    /**
     * Atomically updates the current value with the results of
     * applying the given function to the current and given values,
     * returning the previous value. The function should be
     * side-effect-free, since it may be re-applied when attempted
     * updates fail due to contention among threads.  The function
     * is applied with the current value as its first argument,
     * and the given update as the second argument.
     *
     * @param x the update value
     * @param accumulatorFunction a side-effect-free function of two arguments
     * @return the previous value
     * @since 1.8
     */
    public final int getAndAccumulate(int x,
                                      IntBinaryOperator accumulatorFunction) {
        int prev, next;
        do {
            prev = get();
            next = accumulatorFunction.applyAsInt(prev, x);
        } while (!compareAndSet(prev, next));
        return prev;
    }

    /**
     * Atomically updates the current value with the results of
     * applying the given function to the current and given values,
     * returning the updated value. The function should be
     * side-effect-free, since it may be re-applied when attempted
     * updates fail due to contention among threads.  The function
     * is applied with the current value as its first argument,
     * and the given update as the second argument.
     *
     * @param x the update value
     * @param accumulatorFunction a side-effect-free function of two arguments
     * @return the updated value
     * @since 1.8
     */
    public final int accumulateAndGet(int x,
                                      IntBinaryOperator accumulatorFunction) {
        int prev, next;
        do {
            prev = get();
            next = accumulatorFunction.applyAsInt(prev, x);
        } while (!compareAndSet(prev, next));
        return next;
    }

    //......

}

  可以看出自JDK1.5就开始引入CAS来解决多线程中的并发问题。
  查看方法源码,可以看出所有的CAS操作都是通过sun.misc包下Unsafe类实现的。而sun.misc包存在于JDK的rt.jar包,是由JVM本地实现。
  Unsafe是CAS的核心类。由于Java无法直接访问底层系统,则需要通过本地(native)来访问。Unsafe可以直接操作特定内存的数,其内部方法可以像C语言的指针一样直接操作内存。
  注意:Unsafe类的所有方法都是native修饰的,即Unsafe类的所有方法都可以直接调用底层操作系统资源。

3. CAS在JUC中的应用

  以重入锁ReentrantLock为例。通过查看部分源码:

public class ReentrantLock implements Lock, java.io.Serializable {
    private static final long serialVersionUID = 7373984872572414699L;
    /** Synchronizer providing all implementation mechanics */
    private final Sync sync;

    /**
     * Base of synchronization control for this lock. Subclassed
     * into fair and nonfair versions below. Uses AQS state to
     * represent the number of holds on the lock.
     */
    abstract static class Sync extends AbstractQueuedSynchronizer {
        private static final long serialVersionUID = -5179523762034025860L;

        /**
         * Performs {@link Lock#lock}. The main reason for subclassing
         * is to allow fast path for nonfair version.
         */
        abstract void lock();

        /**
         * Performs non-fair tryLock.  tryAcquire is implemented in
         * subclasses, but both need nonfair try for trylock method.
         */
        final boolean nonfairTryAcquire(int acquires) {
            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0) // overflow
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }
        //......
    }
    //......
}

  可以看出,内部抽象类Sync继承自AbstractQueuedSynchronizer类。AbstractQueuedSynchronizer作为Java多种锁的父类,有很多地方通过CAS操作来提高并发效率。查看AbstractQueuedSynchronizer部分源码:

/**
 * Inserts node into queue, initializing if necessary. See picture above.
 * @param node the node to insert
 * @return node's predecessor
 */
private Node enq(final Node node) {
    for (;;) {
        Node t = tail;
        if (t == null) { // Must initialize
            if (compareAndSetHead(new Node()))
                tail = head;
        } else {
            node.prev = t;
            if (compareAndSetTail(t, node)) {
                t.next = node;
                return t;
            }
        }
    }
}

  可以看出在上述的同步队列的入队操作时,在多线程环境下,对其头尾节点的操作都有可能失败,失败后通过自旋操作再次尝试,直到成功,这也是一种乐观锁的实现。

4. CAS缺点

  • 循环时间长,CPU开销大
  • 只能保证一个共享变量的原子操作
  • 引出ABA问题

5. ABA问题

  比如说一个线程1从内存位置V中取出A,另一个线程2也从内存中取出A,线程2将A变成了B,然后将V位置的数据变成A,这时候线程1进行CAS操作发现内存中仍然是A,那么线程1操作成功。尽管线程1的CAS操作成功,但是不代表这个过程就是没有问题的。
  如果链表的头在变化了两次后恢复了原值,但是不代表链表就没有变化。
  所以JAVA中提供了AtomicStampedReferenceAtomicMarkableReference来处理ABA问题,主要是在对象中额外再增加一个标记来标识对象是否有过变更。

posted @ 2020-06-22 19:33  C3Stones  阅读(359)  评论(0编辑  收藏  举报