GBT算法在拖动滑块辨别人还是机器中的应用

1.数据源格式:(x,y,t),第一个值x是x坐标范围是1-250的整数,y是1-10的整数,t是滑块从上一个坐标到下一个坐标的时间差,ok是判断是人操作的,Fail是判断是机器操作的,数据看的出,同一个记录里面的同一个点,即x,y都相同,但是t不同,以此分析,如果同一个点只出现一次,则该点记录为1,如果出现n次,重复次数为m次,则设计该点的值为m/n,如该点在该条记录出现的总次数是5,t不同的次数是3,则该点的值是=3、5=0.6,分析的依据是,如果该点重复的次数越多,而且距离上一个时间差越近,说明越接近机器人的轨迹,因为人的轨迹是变化较大的。将模型设计为一个大表,以1-2500这2500个数字为字段,这个表在scala 程序中是一个数组,数组长度为2500,1...250分别对应坐标点中的(0,0,)....(0,250),2-500分别对应坐标点中的(1,0)...(1,250)...所以必然,在每条记录里面的所有点必然在这个数组中能找到,在表中就是一行,这些点必然是在这行中能找到一个列属于该点,如果不存在,则设为0.

 

[[25,27,0],[6,-1,470],[8,2,20],[14,-1,38],[10,1,28],[3,0,9],[10,-2,28],[9,1,27],[12,-1,38],[12,0,39],[3,2,10],[10,0,35],[3,-1,8],[6,-1,25],[8,1,31],[5,0,18],[2,1,11],[7,0,29],[2,-2,11],[4,2,20],[4,-2,18],[2,1,13],[1,-1,7],[6,2,32],[3,-1,17],[5,0,37],[4,-1,32],[3,0,24],[4,1,32],[4,-1,39],[4,0,40],[3,2,35],[1,0,12],[2,-2,28],[0,1,229]];FAIL
[[27,24,0],[4,1,467],[8,-1,40],[2,-1,7],[2,2,9],[3,-2,15],[6,2,32],[4,-1,20],[7,1,35],[5,-2,26],[2,1,10],[5,1,27],[1,-1,6],[2,0,15],[5,1,26],[4,-2,28],[3,0,23],[1,2,7],[4,-1,26],[3,-1,19],[1,0,7],[3,2,24],[0,0,6],[5,-1,40],[4,-1,39],[1,1,8],[0,0,7],[3,0,35],[3,0,26],[2,-1,32],[2,0,32],[2,2,33],[1,-2,8],[1,1,25],[1,1,14],[1,-1,22],[2,-1,40],[0,0,22],[1,0,1],[0,1,219]];FAIL
[[25,28,0],[8,1,524],[7,-1,27],[4,0,16],[3,-1,16],[3,2,10],[8,-1,35],[8,-1,40],[8,2,38],[2,-1,10],[6,-1,29],[4,0,23],[7,2,36],[5,-2,33],[5,2,26],[4,-1,29],[4,0,26],[1,0,9],[5,-1,38],[2,0,25],[4,1,29],[3,0,37],[2,0,19],[0,-1,6],[3,1,34],[2,0,24],[2,0,27],[2,-1,32],[2,0,40],[1,1,6],[1,-1,22],[1,0,33],[1,0,4],[0,1,299]];OK

2.算法构造scala代码如下:

import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.feature.VectorIndexer
import org.apache.spark.ml.regression.{GBTRegressionModel, GBTRegressor}
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}
import org.apache.spark.sql.SQLContext
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.regression.LabeledPoint
object GBTForget {
/**
  * Created by lkl on 2017/12/14.
  */
def main(args: Array[String]): Unit = {
  val cf = new SparkConf().setAppName("ass").setMaster("local")
  val sc = new SparkContext(cf)
  val sqlContext = new SQLContext(sc)
  import sqlContext.implicits._
  val File1 = sc.textFile("20171117PP.txt").filter(_.contains("OK")).map(_.replace(",0],","a[").split("a").last).map(_.replace("OK", "1")).map(_.replace("FAIL", "0")).map(line => (line.split(";").last.toDouble, line.split(";").head))
  val File2=sc.textFile("20171117PP.txt").filter(_.contains("FAIL")).map(_.replace(",0],","a[").split("a").last).map(_.replace("OK", "1")).map(_.replace("FAIL", "0")).map(line => (line.split(";").last.toDouble, line.split(";").head))
  val b=File2.randomSplit(Array(0.1, 0.9))
  val (strainingDatas, stestDatas) = (b(0), b(1))
  val File=File1 union(strainingDatas)
  val ass = File.map { p => {
    var str = ""
    val l = p._1
    val a = p._2.substring(2, p._2.length - 2)
    val b = a.replace("],[", "a")
    val c = b.split("a")
    for (arr <- c) {
      val index1 = arr.split(",")(0).toInt + ","
      val index2 = arr.split(",")(1).toInt + ","
      val index3 = arr.split(",")(2).toInt + " "
      val index = index1 + index2 + index3
      str += index
    }
    (l, str.substring(0, str.length - 1))
  }
  }
  val rdd = ass.map( p => {
    val l=p._1
    val rowall =new Array[Double](2500)
    val arr = p._2.split(" ")
    var map:Map[Int,List[Double]] = Map()
    var vlist:List[Double] = List()
    for(a <- arr){
      val x = a.split(",")(0).toInt
      val y =  a.split(",")(1).toInt+5
      val t = a.split(",")(2).toInt
      val index = (x*10)+(y+1)
      val v = t
      vlist = v :: map.get(index).getOrElse(List())
      map += (index -> vlist)

    }
    map.foreach(p => {
      val k = p._1
      val v = p._2
      val sv = v.toSet.size
      val rv = sv.toDouble/v.size.toDouble
      val tmp =f"$rv%1.2f".toDouble
      rowall(k) = tmp
    })
    (l.toDouble,Vectors.dense(rowall))
  }).toDF("label","features")

//  val label=row.getInt(0).toDouble
//  val no=row.getString(2)
//  val feature=Vectors.dense(arr.toArray)
//  (label,no,feature)
  // Automatically identify categorical features, and index them.
  // Set maxCategories so features with > 4 distinct values are treated as continuous.
  val featureIndexer = new VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures").setMaxCategories(4).fit(rdd)
  // Split the data into training and test sets (30% held out for testing)
  val Array(trainingData, testData) = rdd.randomSplit(Array(0.7, 0.3))
  // Train a GBT model.
  val gbt = new GBTRegressor().setLabelCol("label").setFeaturesCol("indexedFeatures").setMaxIter(10)
  // Chain indexer and GBT in a Pipeline
  val pipeline = new Pipeline().setStages(Array(featureIndexer, gbt))
  // Train model.  This also runs the indexer.
  val model = pipeline.fit(trainingData)
  // Make predictions.
  val predictions = model.transform(testData).select("label","prediction").toJavaRDD
     predictions.repartition(1).saveAsTextFile("/user/hadoop/20171214")





  val File0=sc.textFile("001.txt").map(_.replace(",0],","a[").split("a").last).map(_.replace("OK", "1")).map(_.replace("FAIL", "0")).map(line => (line.split(";").last.toDouble, line.split(";").head))

  val ass001 = File0.map { p => {
    var str = ""
    val l = p._1
    val a = p._2.substring(2, p._2.length - 2)
    val b = a.replace("],[", "a")
    val c = b.split("a")
    for (arr <- c) {
      val index1 = arr.split(",")(0).toInt + ","
      val index2 = arr.split(",")(1).toInt + ","
      val index3 = arr.split(",")(2).toInt + " "
      val index = index1 + index2 + index3
      str += index
    }
    (l, str.substring(0, str.length - 1))
  }
  }
  val rdd001 = ass001.map( p => {
    val l=p._1
    val rowall =new Array[Double](2500)
    val arr = p._2.split(" ")
    var map:Map[Int,List[Double]] = Map()
    var vlist:List[Double] = List()
    for(a <- arr){
      val x = a.split(",")(0).toInt
      val y =  a.split(",")(1).toInt+5
      val t = a.split(",")(2).toInt
      val index = (x*10)+(y+1)
      val v = t
      vlist = v :: map.get(index).getOrElse(List())
      map += (index -> vlist)

    }
    map.foreach(p => {
      val k = p._1
      val v = p._2
      val sv = v.toSet.size
      val rv = sv.toDouble/v.size.toDouble
      val tmp =f"$rv%1.2f".toDouble
      rowall(k) = tmp
    })
    (l.toDouble,Vectors.dense(rowall))
  }).toDF("label","features")


  val predicions001=model.transform(rdd001)



 // predicions001.repartition(1).saveAsTextFile("/user/hadoop/20171214001")



}

}

 

posted @ 2017-12-15 09:42  残阳飞雪  阅读(747)  评论(0编辑  收藏  举报