HDU 3790
最短路径问题
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 14009 Accepted Submission(s): 4304
Problem Description
给你n个点,m条无向边,每条边都有长度d和花费p,给你起点s终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。
Input
输入n,m,点的编号是1~n,然后是m行,每行4个数 a,b,d,p,表示a和b之间有一条边,且其长度为d,花费为p。最后一行是两个数 s,t;起点s,终点。n和m为0时输入结束。
(1<n<=1000, 0<m<100000, s != t)
(1<n<=1000, 0<m<100000, s != t)
Output
输出 一行有两个数, 最短距离及其花费。
Sample Input
3 2
1 2 5 6
2 3 4 5
1 3
0 0
Sample Output
9 11
加了输入挂,果然快了一倍。然后个人还是不够严谨
#include <cstdio> #include <iostream> #include <algorithm> using namespace std; #define N 1010 int d[N][N],cost[N][N],vis[N],dist[N],cst[N]; int n,m,a,b,dd,p,s,t; const int inf = 0X700000; int in() //输入挂 { int r = 0; char ch; ch = getchar(); while(ch < '0' || ch > '9') ch = getchar(); while(ch >= '0' && ch <= '9') { r = r*10 + ch-'0'; ch = getchar(); } return r; } void init() { for(int i = 1; i <= n; i++){ for(int j = 1; j <= n; j++) { d[i][j] = cost[i][j] = inf; d[j][i] = cost[j][i] = inf; } vis[i] = 0; dist[i] = cst[i] = inf; } } void input() { while(m--) { //scanf("%d %d %d %d",&a,&b,&dd, &p); a = in(); b = in(); dd = in(); p = in(); if(dd < d[a][b]){ d[a][b]= d[b][a] = dd; cost[a][b] = cost[b][a] = p; }else if(dd == d[a][b] && p < cost[a][b]) { cost[a][b] = cost[b][a] = p; } //d[a][b] = d[b][a] = min(d[a][b],dd); 这行错误 = =!!果然还是不够严谨 //cost[a][b] = cost[b][a] = min(cost[a][b], p); } s = in(); t = in(); } void dij() { for(int i = 1; i <= n; i++){ dist[i] = d[s][i]; cst[i] = cost[s][i]; } vis[s] = 1; dist[s] = 0; cst[s] = 0; for(int i = 2; i <= n; i++) { int mn = inf; int pos = 1; for(int j = 1; j <= n; j++) if(vis[j] == 0 && dist[j] < mn) {pos = j; mn = dist[j];} vis[pos] = 1; for(int j = 1; j <= n; j++) { if(vis[j] == 0 && d[pos][j] < inf) { int newd = dist[pos] + d[pos][j]; int newc = cst[pos] + cost[pos][j]; if(newd < dist[j]) { dist[j] = newd; cst[j] = newc; }else if(newd == dist[j] && newc < cst[j]) cst[j] = newc; } } } } int main() { while(scanf("%d %d", &n, &m) && (m||n)) { init(); input(); dij(); printf("%d %d\n", dist[t], cst[t]); } return 0; }