cangos

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::

 

mapreduce中的reduce数量是由什么来进行控制的呢?

1、numReduceTasks

如下是用来进行测试的一段wordcount的代码

import java.io.IOException;
import java.util.StringTokenizer;

import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

public class PartTest {
	
	
	public static void main(String[] args){
		Path inFile = new Path(args[0]);
		Path outFile = new Path(args[1]);
		
		Job job;
		try {
			job = Job.getInstance();
			job.setJarByClass(PartTest.class);
		       
			FileInputFormat.addInputPath(job , inFile);  
			FileOutputFormat.setOutputPath(job, outFile);
			
			job.setReducerClass(PartTestreducer.class);
			job.setMapperClass(PartTestmapper.class);
			
			
			job.setMapOutputKeyClass(Text.class);
			job.setMapOutputValueClass(IntWritable.class);
			
			job.setOutputKeyClass(Text.class);
			job.setOutputValueClass(IntWritable.class);
			
			
			try {
				job.waitForCompletion(true);
			} catch (ClassNotFoundException e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
			} catch (InterruptedException e) {
				// TODO Auto-generated catch block
				e.printStackTrace();
			}
		} catch (IOException e) {
			// TODO Auto-generated catch block
			e.printStackTrace();
		}
		
        
        /** 
         * InputFormat描述map-reduce中对job的输入定义 
         * setInputPaths():为map-reduce job设置路径数组作为输入列表 
         * setInputPath():为map-reduce job设置路径数组作为输出列表 
         */  
        
	}

}


class PartTestmapper extends Mapper<LongWritable, Text, Text, IntWritable>{
	private final IntWritable one = new IntWritable(1);  
    //private Text word = new Text(); 
	@Override
	protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, IntWritable>.Context context)
			throws IOException, InterruptedException {
		// TODO Auto-generated method stub
		/*
		String line = value.toString();
		for(String s : line.split("\\s+")){
			//if(s.length() > 0){
				context.write(new Text(s), one);
			//}
		}
		*/
		
		
		 String[] line = value.toString().split("\\W+");
		 for(int i = 0 ; i<= line.length-1 ;i++){
			 String s = line[i];
		    context.write(new Text(s), new IntWritable(1));
		}
		
		/*
		
		String line = value.toString();  
		Text word = new Text();
        StringTokenizer token = new StringTokenizer(line);  
        while (token.hasMoreTokens()) {  
            word.set(token.nextToken());  
            context.write(word, one);  
        }
        */
	}
	
}

class PartTestreducer extends Reducer<Text, IntWritable, Text, IntWritable>{

	@Override
	protected void reduce(Text arg0, Iterable<IntWritable> arg1,
			Reducer<Text, IntWritable, Text, IntWritable>.Context context) throws IOException, InterruptedException {
		// TODO Auto-generated method stub
		int sum = 0;
		for(IntWritable i : arg1){
			sum += i.get();
		}
		context.write(arg0, new IntWritable(sum));
	}
	
	
}

 

将上述代码打包成 parttest.jar,并上传到服务器的opt目录

创建文件/opt/test.txt,并上传到hdfs的/tmp目录下

文本内容如下:

hello world
hello test
test hadoop
hadoop hdfs
hive
sql
sqoop

在服务器上执行:

hadoop jar parttest.jar "PartTest" "/tmp/test.txt" "/tmp/part/out1"

我们可以看到日志输出文件:

在这里可以看到只启动了一个reduce任务

然后使用

hadoop fs -ls /tmp/part/out1

可以看到只生成了一个分区文件part-r-00000:

 

 

如果我们把上述代码进行修改:

                        job = Job.getInstance();
			job.setJarByClass(PartTest.class);
		       
			FileInputFormat.addInputPath(job , inFile);  
			FileOutputFormat.setOutputPath(job, outFile);
			
			job.setNumReduceTasks(3);
			
			job.setReducerClass(PartTestreducer.class);
			job.setMapperClass(PartTestmapper.class);
			
			
			job.setMapOutputKeyClass(Text.class);
			job.setMapOutputValueClass(IntWritable.class);
			
			job.setOutputKeyClass(Text.class);
			job.setOutputValueClass(IntWritable.class);
			

  

我们在代码里新加了一行 :job.setNumReduceTasks(3);

将代码重新打包上传,执行:

hadoop jar parttest.jar "PartTest" "/tmp/test.txt" "/tmp/part/out2"

将结果输出到/tmp/part/out2目录

可以看到启动了3个reduce任务。

然后使用

hadoop fs -ls /tmp/part/out2

可以看到/tmp/part/out2文件夹中生成了3个part文件:

 

 所以可以使用  setNumReduceTasks  来设置reduce的数量

 

 

2、mapreduce的分区

我们在原来的代码的最后一段加上如下代码:

class PartTestPartitioner extends Partitioner<Text,IntWritable>{


	@Override
	//参数含义:第一个参数为map任务的outputkey。class,第二个参数为map任务的outputvalue。class,第三个参数为分区的数量,默认为1
	public int getPartition(Text key, IntWritable value, int numPartitions) {
		// TODO Auto-generated method stub
		
		if(key.toString().startsWith("h")){
		     return 0%numPartitions;
		}
		else if(key.toString().startsWith("s")){
			return 1%numPartitions;
		}
		else{
			return 2%numPartitions;
		}
	}
	
}
 

这段代码的含义是:

将以h开头的统计结果输出到part-r-00000

将以s开头的统计结果输出到part-r-00001

将以其他字母开头的统计结果输出到part-r-00002

对原有代码进行如下修改:

                        job = Job.getInstance();
			job.setJarByClass(PartTest.class);
		       
			FileInputFormat.addInputPath(job , inFile);  
			FileOutputFormat.setOutputPath(job, outFile);
			
			job.setNumReduceTasks(3);
			job.setPartitionerClass(PartTestPartitioner.class);
			
			job.setReducerClass(PartTestreducer.class);
			job.setMapperClass(PartTestmapper.class);
			
			
			job.setMapOutputKeyClass(Text.class);
			job.setMapOutputValueClass(IntWritable.class);
			
			job.setOutputKeyClass(Text.class);
			job.setOutputValueClass(IntWritable.class);

  

新加了一行代码:job.setPartitionerClass(PartTestPartitioner.class);

将代码重新打包上传,执行:

hadoop jar parttest.jar "PartTest" "/tmp/test.txt" "/tmp/part/out3"

将结果输出到/tmp/part/out3目录

可以看到启动了3个reduce任务。

然后使用

hadoop fs -ls /tmp/part/out3

可以看到/tmp/part/out3文件夹中生成了3个part文件:

 

 分别查看三个文件:

可以看到输出结果已经分别输出到对应的分区文件。

 

 

注意:

job.setNumReduceTasks(3);
job.setPartitionerClass(PartTestPartitioner.class);

NumReduceTasks的数量不能小于partitioner的数量,否则结果会写到part-r-00000中

posted on 2017-02-22 18:21  cangos  阅读(7641)  评论(0编辑  收藏  举报