洛谷 P1063 能量项链
题目描述
在 MarsMars 星球上,每个 MarsMars 人都随身佩带着一串能量项链。在项链上有 NN 颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是 MarsMars 人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为 mm ,尾标记为 rr ,后一颗能量珠的头标记为r,尾标记为 nn ,则聚合后释放的能量为 m \times r \times nm×r×n ( MarsMars 单位),新产生的珠子的头标记为 mm,尾标记为 nn 。
需要时, MarsMars 人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。
例如:设 N=4N=4 , 44 颗珠子的头标记与尾标记依次为 (2,3) (3,5) (5,10) (10,2)(2,3)(3,5)(5,10)(10,2) 。我们用记号⊕表示两颗珠子的聚合操作,( jj ⊕ kk )表示第 j,kj,k 两颗珠子聚合后所释放的能量。则第 44 、 11 两颗珠子聚合后释放的能量为:
( 44 ⊕ 11 ) =10 \times 2 \times 3=60=10×2×3=60 。
这一串项链可以得到最优值的一个聚合顺序所释放的总能量为:
(( 44 ⊕ 11 )⊕ 22 )⊕ 33 )= 10 \times 2 \times 3+10 \times 3 \times 5+10 \times 5 \times 10=71010×2×3+10×3×5+10×5×10=710 。
输入输出格式
输入格式:
第一行是一个正整数 N(4≤N≤100)N(4≤N≤100) ,表示项链上珠子的个数。第二行是 NN 个用空格隔开的正整数,所有的数均不超过 10001000 。第 ii 个数为第 ii 颗珠子的头标记 (1≤i≤N)(1≤i≤N) ,当 i<N< span>i<N<span> 时,第 ii 颗珠子的尾标记应该等于第 i+1i+1 颗珠子的头标记。第 NN 颗珠子的尾标记应该等于第 11 颗珠子的头标记。
至于珠子的顺序,你可以这样确定:将项链放到桌面上,不要出现交叉,随意指定第一颗珠子,然后按顺时针方向确定其他珠子的顺序。
输出格式:
一个正整数 E(E≤2.1 \times (10)^9)E(E≤2.1×(10)9) ,为一个最优聚合顺序所释放的总能量。
输入输出样例
说明
NOIP 2006 提高组 第一题
思路:断环成链,区间DP。
#include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int n,ans; int w[1000],f[1000][1000]; int main(){ scanf("%d",&n); for(int i=1;i<=n;i++){ scanf("%d",&w[i]); w[n+i]=w[i]; } for(int i=2*n-1;i>=1;i--) for(int j=i+1;j<=i+n;j++) for(int k=i;k<j;k++) f[i][j]=max(f[i][j],f[i][k]+f[k+1][j]+w[i]*w[k+1]*w[j+1]); for(int i=1;i<=n;i++) ans=max(ans,f[i][i+n-1]); printf("%d",ans); }