洛谷 P2919 [USACO08NOV]守护农场Guarding the Farm
题目描述
The farm has many hills upon which Farmer John would like to place guards to ensure the safety of his valuable milk-cows.
He wonders how many guards he will need if he wishes to put one on top of each hill. He has a map supplied as a matrix of integers; the matrix has N (1 < N <= 700) rows and M (1 < M <= 700) columns. Each member of the matrix is an altitude H_ij (0 <= H_ij <= 10,000). Help him determine the number of hilltops on the map.
A hilltop is one or more adjacent matrix elements of the same value surrounded exclusively by either the edge of the map or elements with a lower (smaller) altitude. Two different elements are adjacent if the magnitude of difference in their X coordinates is no greater than 1 and the magnitude of differences in their Y coordinates is also no greater than 1.
农场里有许多山丘,在山丘上约翰要设置哨岗来保卫他的价值连城的奶牛.
约翰不知道有多少山丘,也就不知道要设置多少哨岗.他有一张地图,用整数矩阵的方式描 述了农场N(1 <= N<=700)行M(1 < M<=700)列块土地的海拔高度好 H_ij (0 <= H_ij <= 10,000).请帮他 计算山丘的数量.
一个山丘是指某一个方格,与之相邻的方格的海拔高度均严格小于它.当然,与它相邻的方 格可以是上下左右的那四个,也可以是对角线上相邻的四个.
输入输出格式
输入格式:
* Line 1: Two space-separated integers: N and M
* Lines 2..N+1: Line i+1 describes row i of the matrix with M
space-separated integers: H_ij
输出格式:
* Line 1: A single integer that specifies the number of hilltops
输入输出样例
8 7
4 3 2 2 1 0 1
3 3 3 2 1 0 1
2 2 2 2 1 0 0
2 1 1 1 1 0 0
1 1 0 0 0 1 0
0 0 0 1 1 1 0
0 1 2 2 1 1 0
0 1 1 1 2 1 0
3
说明
There are three peaks: The one with height 4 on the left top, one of the points with height 2 at the bottom part, and one of the points with height 1 on the right top corner.
思路:搜索。
#include<queue> #include<cstdio> #include<cstring> #include<iostream> #include<algorithm> using namespace std; int h[702][702]; int n,m,ans,H,tot; struct po{ int x,y,h; }a[703*703]; queue<int>qx,qy; int fx,fy,rx,ry; bool v[1000][1000]; int X[8]={0,0,1,-1,1,-1,1,-1}; int Y[8]={1,-1,0,0,1,1,-1,-1}; int cmp(po xx,po yy){ return xx.h>yy.h; } void bfs(int x,int y){ v[x][y]=1; qx.push(x);qy.push(y); while(!qx.empty()){ fx=qx.front();qx.pop(); fy=qy.front();qy.pop(); H=h[fx][fy]; for(int i=0;i<=7;i++){ rx=X[i]+fx;ry=Y[i]+fy; if(rx<1||rx>n||ry<1||ry>m) continue; if(v[rx][ry]) continue; if(h[rx][ry]<=H){ qx.push(rx);qy.push(ry); v[rx][ry]=1; } } } } int main(){ scanf("%d%d",&n,&m); for(int i=1;i<=n;i++) for(int j=1;j<=m;j++){ tot++; scanf("%d",&a[tot].h); h[i][j]=a[tot].h; a[tot].x=i;a[tot].y=j; } sort(a+1,a+tot+1,cmp); memset(v,0,sizeof(v)); for(int i=1;i<=tot;i++){ int xx=a[i].x,yy=a[i].y; if(v[xx][yy]) continue; bfs(xx,yy); ans++; } cout<<ans; }