洛谷 P2652 同花顺

题目背景

所谓同花顺,就是指一些扑克牌,它们花色相同,并且数字连续。

题目描述

现在我手里有n张扑克牌,但它们可能并不能凑成同花顺。我现在想知道,最少更换其中的多少张牌,我能让这 n 张牌都凑成同花顺?

输入输出格式

输入格式:

 

第一行一个整数n,表示扑克牌的张数。接下来n行,每行两个整数 ai 和 bi。其中ai表示第 i 张牌的花色,bi表示第 i 张牌的数字。

 

输出格式:

 

一行一个整数,表示最少更换多少张牌可以达到目标。

 

输入输出样例

输入样例#1:
5
1 1
1 2
1 3
1 4
1 5
输出样例#1:
0
输入样例#2:
5
1 9
1 10
2 11
2 12
2 13
输出样例#2:
2

说明

数据范围

对于30%的数据,n<=10。

对于60%的数据,n ≤ 10^5,1 ≤ ai ≤ 10^5,1 ≤ bi ≤ n。

对于100%的数据,n ≤ 10^5,1 ≤ ai, bi ≤ 10^9。

思路:

反向思考一下,我们只要求能组成的同花顺的最长长度(组成张数)l,再用n减去l即可。

怎么求l呢?

假设有这样一组样例:

6

1 7

2 8

1 9

1 10

2 2

3 5

首先我们要思考同花顺的性质:花色相同且数字连续。那么由此我们可以想到什么呢?大多数人最先想到的大概是排序吧。没错,的确需要排序,这是做出这道题的一个十分重要的基础。但是同花顺还有一个性质是花色相同,说明这个题排序并不是简单的排序。该怎么排序才能求出“颜色相同”的最长单调递增序列呢?我们可以定义一个排序法则rule(详见代码),如果两张牌颜色相同,则将它们按从小到大的顺序排序;如果颜色不同,则将他们的颜色编号从小到大排序。

排序后我们将得到这样一组数据:

1 7

1 9

1 10

2 2

2 8

3 5 排完序之后我们是不是就可以开开心心求最长序列了呢?机智的出题人显然不会这么轻易放过我们(233),TA埋了一个坑在这里面:可能会存在花色和数值均相同的扑克牌。这样就影响了我们求最大序列长度,所以我们必须要通过条件语句来筛出这些牌。我们再用一个数组b[]来记录筛出重复牌后的数据。跳过这个坑之后我们就可以开始最后的工作啦!如何求最长的序列呢?我们可以通过枚举所有区间,来判断哪个区间长度最大且满足是同色牌&&b[i].y-b[j].y+1<=n(这个判断条件非常的关键)。这个条件是怎么推出的呢?先理解b[i].y-b[j].y+1的意义:它表示区间的长度,也就是说这个区间有几张牌。当它的长度d<=n的时候,一定能够拿出足够的牌来更换这个区间中不满足条件的牌。这样我们就可以求出最大序列长度啦~

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define MAXN 100001
using namespace std;
int n,cnt,ans;
struct nond{
    int col,num;
}v[MAXN],bns[MAXN];
int cmp(nond a,nond b){
    if(a.col==b.col)    return a.num<b.num;
    return a.col<b.col;
}
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
        scanf("%d%d",&v[i].col,&v[i].num);
    sort(v+1,v+1+n,cmp);
    for(int i=1;i<=n;i++)
        if(v[i-1].col!=v[i].col||v[i-1].num!=v[i].num)
            bns[++cnt]=v[i];
    for(int i=1;i<=cnt;i++){
        int tmp=0;
        for(int j=i;j>=1;j--)
            if(bns[i].col==bns[j].col&&bns[i].num-bns[j].num+1<=n)
                tmp++;
            else break; 
        if(tmp>ans)    ans=tmp;
    }
    cout<<n-ans;
}

 

posted @ 2017-09-14 15:58  一蓑烟雨任生平  阅读(278)  评论(0编辑  收藏  举报