HDU 3836 Equivalent Sets

Equivalent Sets

Time Limit: 12000/4000 MS (Java/Others)    Memory Limit: 104857/104857 K (Java/Others)
Total Submission(s): 4819    Accepted Submission(s): 1733

Problem Description
To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
Now you want to know the minimum steps needed to get the problem proved.
 
Input
The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
 
Output
For each case, output a single integer: the minimum steps needed.
 
Sample Input
4 0 3 2 1 2 1 3
 
Sample Output
4 2
Hint
Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
 
Source
 
Recommend
xubiao   |   We have carefully selected several similar problems for you:  3835 3828 3834 3830 3829 
#include<iostream>
#include<cstdio> 
#include<cstring>
#include<algorithm>
#define MAXN 100000+15
using namespace std;
int n,m,tot,tim,top,sumcol,ans,bns;
int to[MAXN],from[MAXN],net[MAXN],x[MAXN],col[MAXN],into[MAXN],out[MAXN];
int dfn[MAXN],low[MAXN],vis[MAXN],stack[MAXN],visstack[MAXN];
void add(int u,int v){
    to[++tot]=v;x[tot]=u;net[tot]=from[u];from[u]=tot;
}
void tarjin(int now){
    low[now]=dfn[now]=++tim;
    stack[++top]=now;
    visstack[now]=1;
    vis[now]=1;
    for(int i=from[now];i;i=net[i])
        if(visstack[to[i]])
            low[now]=min(low[now],dfn[to[i]]);
        else if(!vis[to[i]]){
            tarjin(to[i]);
            low[now]=min(low[now],low[to[i]]);
        }
    if(dfn[now]==low[now]){
        sumcol++;
        col[now]=sumcol;
        while(stack[top]!=now){
            col[stack[top]]=sumcol;
            visstack[stack[top]]=0;
            top--;
        }
        visstack[now]=0;
        top--;
    } 
}
int T;
int main(){
    while(scanf("%d%d",&n,&m)!=EOF){
        top=0;tot=0;sumcol=0;tim=0;
        ans=0;bns=0;
        memset(to,0,sizeof(to));
        memset(low,0,sizeof(low));
        memset(dfn,0,sizeof(dfn));
        memset(vis,0,sizeof(vis));
        memset(col,0,sizeof(col));
        memset(net,0,sizeof(net));
        memset(out,0,sizeof(out));
        memset(into,0,sizeof(into));
        memset(from,0,sizeof(from));
        memset(stack,0,sizeof(stack));
        memset(visstack,0,sizeof(visstack));
        for(int i=1;i<=m;i++){
            int a,b;
            cin>>a>>b;
            add(a,b);
        }
        for(int i=1;i<=n;i++)
            if(!vis[i])    tarjin(i);
        if(sumcol==1){
            cout<<"0"<<endl;
            continue;
        }
        for(int i=1;i<=tot;i++)
            if(col[to[i]]!=col[x[i]]){
                into[col[to[i]]]++;
                out[col[x[i]]]++;
            }
        for(int i=1;i<=sumcol;i++){
            if(into[i]==0)    ans++;
            if(out[i]==0)    bns++;
        }
        cout<<max(ans,bns)<<endl;
    }
}

 

posted @ 2017-08-20 15:47  一蓑烟雨任生平  阅读(206)  评论(0编辑  收藏  举报